
The Inner Source Revolution: How
corporations create commercial
software using open source
methodologies

Vijay K. Gurbani, Ph.D.
Bell Laboratories, Nokia Networks

Monday, June 19, 2017

2

vkg@bell-labs.com UniForum Chicago 2017

Joint work with ...

● James Herbsleb, Carnegie Mellon University.
● Anita Garvert, Lucent Technologies, Inc.
● Developers, testers, and many others who

selflessly contributed to this work.

3

vkg@bell-labs.com UniForum Chicago 2017

● Inner Source Commons Summit
– September 27-29, 2017, Naperville, Illinois (In Nokia

building)
(http://paypal.github.io/InnerSourceCommons/events/i
sc-fall-2017/)

● http://www.inner-sourcing.com/
– Good repository of corporate interest in Inner Source.

● Linkedin InnerSource Commons group
– https://www.linkedin.com/groups/4772921

Upcoming Inner Source
Events/Resources

4

vkg@bell-labs.com UniForum Chicago 2017

References

[Gurbani 2010] Vijay K. Gurbani, Anita Garvert and James Herbsleb, “Managing a
corporate open source software asset,” Communications of the ACM, 53(2), pp. 155-159,
February 2010.

[Gurbani 2006] Gurbani, V.K., Garvert, A., and Herbsleb, J., "A Case Study of a Corporate
Open Source Development Model," Proceedings of the 28th ACM International
Conference on Software Engineering (ICSE 2006), pp. 472-481, May 20-28, 2006.

[Gurbani 2005] Gurbani, V.K., Garvert, A., and Herbsleb, J., "A Case Study of Open
Source Tools and Practices in a Commercial Setting," Proceedings of the 5th ACM
Workshop on Open Source Software Engineering, pp. 24-29, May 17, 2005

[Stol 2014] Klaas-Jan Stol, et al., “Key factors for adopting Inner Source,” ACM
Transactions on Software Engineering and Methodology, 23(2), pp. 18:1-18:35, March
2014.

[Capraro, 2017] Capraro, M. and Riehle, D., “Inner Source Definition, Benefits, and
Challenges,” ACM Computing Surveys, 49(4), pp. 67:1–67:36, 2017.

About Nokia

6

vkg@bell-labs.com UniForum Chicago 2017

A first definition of the problem

● Can corporations benefit from developing
software using commonly accepted
open source software
development techniques?

● This is different than “do
corporations benefit from
using open source software?”

7

vkg@bell-labs.com UniForum Chicago 2017

Inner Source

● [Stol 2014] (and others) define Inner Source as adoption of open
source development practices within the confines of an
organization.
– The application of best practices, processes, culture and

methodologies taken from open source world and applied to internal
software development and innovation efforts [1].

– No open source is being developed, but the firm's development process is
enhanced through the addition of open source practices [2].

● [Gurbani 2005,2006,2010] terms this as Corporate Open Source.
● Key question: Can corporations benefit from the open source

development methodology, or under what conditions can
corporations adopt open source development methodology?

[1] Black Duck Software Inner Source Webinar Series: Community development practices in corporate IT.
 [Online https://www.blackducksoftware.com/consulting/inner-source]
[2] Dirk Riehle et al., “Open collaboration within corporations using software forges,” IEEE Software, 26(2), 2009.

8

vkg@bell-labs.com UniForum Chicago 2017

Inner Source

● [Gurbani 2010] establishes the following taxonomy:
– Infrastructure-based: common open source forge, but re-use is ad-hoc and

support sporadic.

– Project-specific: an owner of the shared asset chartered with developing,
maintaining, supporting, and evangelizing the shared asset.

● My classification scheme is used as foundational work and is
currently being refined by the Inner Source research community.
– [Stol 2014] classifies Inner Source programs of 9 organizations using this

model; Infrastructure-based is more prevalent .

– [Capraro, 2017] develops a quantitative model of the elements that
constitute Inner Source; applies that model to various Inner Source
projects.

– [??? 20??] Other works are in progress :-)

9

vkg@bell-labs.com UniForum Chicago 2017

Inner Source

Table source [Stol 2014]

10

vkg@bell-labs.com UniForum Chicago 2017

Open source methods in Nokia

● Nokia's Community of
Sharing.

– Designed to promote
software reuse across
business divisions.

– Search engine for
discovery.

– Mostly an Infrastructure-
based model.

● Mobile Networks CTO has
initiatives planned to help
facilitate software reuse that
leverages open source
methods.

● MN CTO will guide and provide
tools to facilitate the visibility
and traceability of software
components from internal
repositories.

● MN CTO is defining and
promoting best practices for
“Inner Sourcing.”

11

vkg@bell-labs.com UniForum Chicago 2017

Open source: a brief history in time

12

vkg@bell-labs.com UniForum Chicago 2017

– ... and circa 2002 “The Lucent Common SIP
Stack”

Graphic courtesy James Knauft, Alcatel-Lucent.

Open source: a brief history in time

13

vkg@bell-labs.com UniForum Chicago 2017

Open source versus traditional
development

● Are open source development characteristics
incompatible with traditional commercial
development?
– Requirements.

● Traditional: Considerable time to gather and analyze
requirements in an inter-disciplinary team (marketing,
product management, software engineering).

● Open source: Loose requirements, typical user may be
a developer, change requests through mailing list,
change request may or may not be acted on.

14

vkg@bell-labs.com UniForum Chicago 2017

Open source versus traditional
development

– Work assignments:
● Traditional: Management-driven. Developers belong to

an organization, and assigned by management on
tasks. Usually effort to match skills and assignment, but
developer choice generally limited.

● Open source: Developer-driven. Starts with a perceived
shortcoming in the software (“scratching an itch”).
Strong contributors take larger role in the project.

15

vkg@bell-labs.com UniForum Chicago 2017

Open source versus traditional
development

– Software architecture:
● Traditional: Monolithic, may be modular, but in the end it

serves one master: the sponsoring department or
organization.

● Open source: Must be modular with especially well-
defined interface points and APIs to support
geographically distributed and ad-hoc contributors.

16

vkg@bell-labs.com UniForum Chicago 2017

Open source versus traditional
development

– Tool compatibility:
● Traditional: Tools (source code control, debugging,

compiling) are dictated by the specific organization or
department.

– clearcase, sccs
● Open source: Much wider range of tools available to

support the isolated software development model.
– hg, git, svn, cvs.

17

vkg@bell-labs.com UniForum Chicago 2017

Open source versus traditional
development

– Software processes:
● Traditional: Process-intensive with various evaluation

points (may be easing lately).
● Open source: Light to non-existent. Often control on

whether the contributed source is accepted lies in a
“benevolent dictator” or a small group of experts.

18

vkg@bell-labs.com UniForum Chicago 2017

Open source versus traditional
development

– Incentive structure:
● Traditional: Profit-driven.
● Open source: Driven by a more complex set of motives:

desire to learn new skills, driven by creating features
one needs, altruistic inclinations, etc. Money does NOT
play a part in contributing to open source.

19

vkg@bell-labs.com UniForum Chicago 2017

The project: A telecommunication
signaling server

● SIP: Session Initiation Protocol
– An multimedia session setup and teardown

protocol.
● Any type of sessions: voice, video, gaming, ...

– March 1999: RFC 2543

– August 2002: RFC 3261

– Used in 3G, 4G, LTE, VoLTE, anywhere where
service-provider control of signaling and media
elements is/will be required.

20

vkg@bell-labs.com UniForum Chicago 2017

Early 1998 Mid-late 1998 1999 2000 2001 2002 2003 and beyond

Early involvement in SIP.
SIP yet at I-D stage.
Implemented first SIP Server at IH
to demonstrate ICW.

Debates rage between SIP
and H.323.
Our work in SIP/IN starts.

Debates continue between
SIP and H.323.
SIP becomes an RFC.
Gains industry foothold.
SIP/IN Server -> iSIP.

Took iSIP to 3 Bakeoffs (4,5,6).
Visible by standards participation
And conference presentations.
SIP starts to be seen as the answer
to services (move away from telephony
roots) as the telecom industry melts.
3GPP adopts SIP.

Took iSIP to 2 Bakeoffs (7,9) – only doing
advanced scenarios now.
H.323 vs. SIP debate eases as each starts
to becomes more like the other.
iSIP starts to get internal LU attention.

Took iSIP to 1 Bakeoff (11) – utility decreases.
SIP really starts to be viewed as a service creation tool
which will revitilize the telecom industry – the web model.
RFC3261 released; iSIP. updated to rfc3261.
Many field trials, no large scale deployments yet.
iSIP becomes GA in PacketIN.

Deployments start to happen (Vonage,
Denwa, …).
SIP in the mainstream; one of the most
active WGs in the IETF.
Reuse of iSIP gives birth to siptrans.
Tremendous amount of internal LU
interest in iSIP/siptrans.
Protocol starts to get ironed out (UDP
deprecation, SCTP support, …)

The project: A telecommunication
signaling serverFrozen in time: A slide

from 2003 talk!

21

vkg@bell-labs.com UniForum Chicago 2017

The project: Establishing open
source

● Timeline: 1998 – 2006.
● Phase 1: 1998 – 2000

– Following early trajectory of SIP.

– Closely working with IETF and in-house view on how SIP fits in the
telecommunication
ecosystem.

– Code given to anyone
(in the company) that asked.

– Code taken to SIP bakeoffs.

– Primary sponsor of the work
was the host business
unit.

© 2009, Vijay K. Gurbani

22

vkg@bell-labs.com UniForum Chicago 2017

The project: Establishing open
source

● Phase 2: 2001 - 2004

Cycle 1: Opportunistic partnering.
● Asset primarily owned by one

organization.
● Moved to being a framework used

by other projects.
Cycle 2: Branching out.
● User initiated change requests.
● More business units start to

take interest in the asset.
● Requests started to arrive to

evolve the server to a platform.

Graphic source: http://media-cdn.tripadvisor.com/media/photo-s/03/13/49/ee/egyptian-bazaar.jpg

23

vkg@bell-labs.com UniForum Chicago 2017

The project: Establishing open
source

● Phase 3: 2004 – 2006.
– Formal procedures in place to get contributions

back.

– “Benevolent dictator” (me!)

– Refactored source code to make it a library.

– Business unit interest increases.

– Code branched, and more formal support role
started to be envisioned.

24

vkg@bell-labs.com UniForum Chicago 2017

The project: Establishing open
source

● As size of development community increased from 1-2
developers in Phase I and II to 30 developers working
concurrently in Phase III, an open source group was formally
formed.
– The Common SIP Stack (CSS) Group.

● CSS has two goals:
– Maintain an independent and common source repository such that all

projects take their deliverables from CSS.

– Evangelize the technology and the implementation by creating
awareness of the resource within the company.

● (Feb 2006) Email from Jeong Kim (then Bell Labs President)
asking R&D to evaluate internal SIP stack before outside
requisition.

25

vkg@bell-labs.com UniForum Chicago 2017

The project: By the numbers

● Revenue producing asset.
● > 20 individual Bell Labs and business division

projects use the asset.
● >120 individual users of the asset.
● Parts of code reused for other projects

(parsing).

As of 2006.

26

vkg@bell-labs.com UniForum Chicago 2017

The project: CSS – 1 stop shop

27

vkg@bell-labs.com UniForum Chicago 2017

● CSS consisted of:
– Product manager / Liaison

– Chief Architect (“benevolent dictator”)

– Trusted lieutenants
● Compression
● Monoblock
● ...

– Project manager

– Development engineers

The project: CSS – 1 stop shop

Corporate
Open
Source
(COS)

28

vkg@bell-labs.com UniForum Chicago 2017

The Project: The COS “core team”

Liaison

Chief Architect Project Manager

Release Advocate

Delivery Advocate

 Feature Advocate

Development Staff

Quality Assurance Staff

Development Engineers

Manage
contributions
from BD towards
the common
asset.

29

vkg@bell-labs.com UniForum Chicago 2017

Roles on the core team
Liaison
● Overall responsibility for open source project; evangelizes the project
● Management of all activities performed by core team
● Interfaces with each interested business unit for new work requests
● Works closely with: Chief Architect, Project Manager

Chief Architect
● Ideally someone who founded the asset and has invested

considerable energy in it
● Good software engineering skills, but also an industry overview of

how to position the technology and how the technology evolves
● Must respect business decisions before personal vision (Important!)

Project Manager
● Assist in release and load planning
● Manage tools to define and track features
● Ensure (light weight) process compliance

30

vkg@bell-labs.com UniForum Chicago 2017

Roles on the core team

● Traditional developer and QA roles exist in a COS.
● But also

– Business unit delivery advocate: assist in build integration
and assimilate contributions from the BU into the core
software.

– Feature advocates: In charge of substantive features and
saw them to completion (trusted lieutenants).

– Release advocates: Code czar for a specific release.

● These roles were continuously reassigned to different
members.

31

vkg@bell-labs.com UniForum Chicago 2017

The Project: Summary comparison

From [Gurbani 2010]

32

vkg@bell-labs.com UniForum Chicago 2017

The Project: Summary comparison

From [Gurbani 2010]

33

vkg@bell-labs.com UniForum Chicago 2017

● ... and can our success be replicated?
● Our success was a convergence of:

– Being on the cusp of a new technology (protocol
development in the IETF);

– Having a feature-rich, stable, and standards-
compliant implementation when the company was
looking for SIP assets;

– Having a significant pool of users who were
interested and capable developers.

Postmortem: Why did we succeed?

34

vkg@bell-labs.com UniForum Chicago 2017

● Success criteria:
– Technology is needed by several product groups (hence a reason

to pool resources).

– Technology is relatively immature, thus requirements and
features are not fully known at the outset.

– Product groups have differing needs and specific expertise in
customizing the software, ensuring that everyone benefits from
contributions of each group.

– Initial asset has a sound modular architecture, making it easier to
evolve.

– Recognize (and accommodate) the tension between cultivating a
common resource and the pressure to get specific releases of
products out on time (in other words, the benevolent dictator
cannot be petulant).

Postmortem: Why did we succeed?

35

vkg@bell-labs.com UniForum Chicago 2017

● For such projects to succeed, it is imperative that they
benefit from a large and organized sponsoring
business division within the corporation that can act as
a champion for the common asset.

● Formal support and ownership required as the
common asset is integrated into products being
created by other business divisions cannot be ignored.

● Can't simply “throw the software over the wall.”
● Wide participation, down to supply-chain level.

Postmortem: Lessons learnt
(Primary)

36

vkg@bell-labs.com UniForum Chicago 2017

● Requirements and software processes:
– Must scale from organizational view to a company-wide

view: prioritize features across disjoint projects, identify
common work, coordinate virtual teams, ensure overall
product meets the needs of all customers.

● Work assignment and incentive structure:
– Management support for the “benevolent dictator”.

– Management support for “trusted lieutenants”.

– Cross-organizational support for developers.

– Need for a meritocracy.

Postmortem: Lessons learnt
(Secondary)

37

vkg@bell-labs.com UniForum Chicago 2017

● Software architecture
– Unsurprisingly, independent strains must be

discouraged or tracked for an eventual merge.

– Modular architecture, well defined interfaces,
“trusted lieutenants” in charge of key components.

– Refactoring, not reinvention (e.g., SIP stack parser).

– Customization while preserving core architecture.

– Need to architect software in ways appropriate for
different development styles and organizational
settings.

Postmortem: Lessons learnt
(Secondary)

38

vkg@bell-labs.com UniForum Chicago 2017

● Web location, web location, web location
– Disseminate COS projects as widely as possible.

– Developers need to know that the COS is a core company
asset.

– Advertise at grass roots level (developer to developer) to the
executive level.

● Tool uniformity:
– Use common set of development and source control tools.

(This is easier said than done; every organization has
affinity to their own tools.)

– Distributed source code should fit the load building strategy
of a particular group.

Postmortem: Lessons learnt
(Secondary)

39

vkg@bell-labs.com UniForum Chicago 2017

● Sizable interest in Inner Source [Stol 2014].
● Our contributions [Gurbani 2005,2006,2010]

demonstrates a model for corporations
adopting what is now being termed as Inner
Source.

● Obligatory question: is the “bazaar” model the
best model?
– The curious case of benjamin the config button*

Summary / Wrapup / Q&A

* Poul Henning-Kamp, “A generation lost in the bazaar,” Communications of the
ACM, 55(10), 2012.

40

vkg@bell-labs.com UniForum Chicago 2017

Thank you!

● Vijay K. Gurbani
vijay.gurbani@nokia-bell-labs.com
https://www.bell-labs.com/usr/vijay.gurbani
Bell Laboratories, Nokia Networks

	PRESENTATION TITLE
	Slide 2
	Slide 3
	Slide 4
	About Nokia
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Tracing the protocol through iSIP
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

