
Introduction
Objective-C

Application Components
Building an Application

iPhone SDK
For Java Developers

Rakesh Vidyadharan
rakesh@sptci.com

2009-02-17

Rakesh Vidyadharan iPhone SDK For Java Developers

mailto:rakesh@sptci.com

Introduction
Objective-C

Application Components
Building an Application

iPhone SDK

Uses Objective-C as the base programming language. Can mix
C/C++ code as necessary.

Similar to the Cocoa framework used to build Mac OS X
desktop applications.

Entirely MVC based.

Requires an Intel based Mac1.

Well documented with sample applications.

Xcode IDE and Interface Builder.

Simulator for ease of development and testing.

1People have got it working on PPC machines.
Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Language Fundementals

Smalltalk features added to C.

Objects follow different syntax.

[o b j myMethod : param1 paramTwoName : param2] ;

True dynamic binding.

Weakly typed language.

Reference count based memory management.

alloc message increments refcount.
copy message increments refcount.
retain message increments refcount.
release message decrements refcount.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Memory Management

Keep retain and release in the same code block.

NSStr ing ∗ s t r = [[NSStr ing a l l o c] i n i t] ;
s e l f . s t r i n g = s t r ;
[s t r r e l e a s e] ;

Use autorelease for objects returned from methods.

NSStr ing ∗ s t r = [[NSStr ing a l l o c] i n i t] ;
r e t u r n [s t r a u t o r e l e a s e] ;

Ensure all fields are released in the dealloc method.

[f i e l d 1 r e l e a s e] ;
[f i e l d 2 r e l e a s e] ;
[s u p e r d e a l l o c] ;

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Decorators more common than inheritance.

Class semantics

Have to explicitly extend NSObject.
All fields are protected by default.
Methods declared in header files are always public.

No garbage collector (on iPhone).

No method over-loading. Parameter handles are part of
method signature.

Pointer not reference based.

Methods are invoked via messages.

Categories allow adding behaviour to objects.

Accessor methods can be synthesised.

No namespaces.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Unit Testing

OCUnit framework included with Xcode.

Based on SUnit, Kent Beck’s Smalltalk unit testing framework
from which JUnit is also derived.

Similar to JUnit 3.x, not as elegant as JUnit 4.x

@ i n t e r f a c e MyClassTest : SenTestCase

@implementat ion MyClassTest
− (v o i d) setUp { [s u p e r setUp] ; }
− (v o i d testMethod {}
− (v o i d) tearDown { [s u p e r tearDown] ; }

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Unit Testing

OCUnit framework included with Xcode.

Based on SUnit, Kent Beck’s Smalltalk unit testing framework
from which JUnit is also derived.

Similar to JUnit 3.x, not as elegant as JUnit 4.x

@ i n t e r f a c e MyClassTest : SenTestCase

@implementat ion MyClassTest
− (v o i d) setUp { [s u p e r setUp] ; }
− (v o i d testMethod {}
− (v o i d) tearDown { [s u p e r tearDown] ; }

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Protocol for encrypter

@ p r o t o c o l E n c r y p t e r
− (i d) i n i t W i t h K e y : (NSStr ing ∗) s e c r e t ;
− (NSData ∗) e n c r y p t : (NSStr ing ∗) v a l u e ;
− (NSStr ing ∗) d e c r y p t : (NSData ∗) v a l u e ;
@end

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Conforms to Encrypter

#i m p o r t ” E n c r y p t e r . h”

@ i n t e r f a c e XOREncrypter : NSObject <E n c r y p t e r >
{

NSData ∗ key ;
}
@end

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Implementation Class

#i m p o r t ” XOREncrypter . h”

@ i n t e r f a c e XOREncrypter (P r i v a t e M e t h o d s)
− (NSData ∗) x o r : (NSData ∗) data ;
@end

@implementat ion XOREncrypter
− (i d) i n i t { . . . }
− (i d) i n i t W i t h K e y : (NSStr ing ∗) s e c r e t { . . . }
− (v o i d) d e a l l o c { . . . }
− (NSData ∗) e n c r y p t : (NSStr ing ∗) v a l u e { . . . }
− (NSStr ing ∗) d e c r y p t : (NSData ∗) v a l u e { . . . }
− (NSData ∗) x o r : (NSData ∗) data { . . . }
@end

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Auto Release Pools

Auto release pools are used to manage autoreleased objects.

Auto release pool is automatically added for each event loop
for the main UI thread.

You must maintain your own pool if you perform work in
background threads.

N S A u t o r e l e a s e P o o l ∗ p o o l =
[[N S A u t o r e l e a s e P o o l a l l o c] i n i t] ;

NSStr ing ∗ s t r = [NSStr ing
s t r i n g W i t h F o r m a t : @‘ ‘%@−%@’ ’ ,
@ ‘ ‘ One ’ ’ , @ ‘ ‘ Two ’ ’] ;

[p o o l r e l e a s e] ;

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Auto Release Pools

Auto release pools are used to manage autoreleased objects.

Auto release pool is automatically added for each event loop
for the main UI thread.

You must maintain your own pool if you perform work in
background threads.

N S A u t o r e l e a s e P o o l ∗ p o o l =
[[N S A u t o r e l e a s e P o o l a l l o c] i n i t] ;

NSStr ing ∗ s t r = [NSStr ing
s t r i n g W i t h F o r m a t : @‘ ‘%@−%@’ ’ ,
@ ‘ ‘ One ’ ’ , @ ‘ ‘ Two ’ ’] ;

[p o o l r e l e a s e] ;

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

Threads

Primary support through NSOperation and NSThread classes.

NSTimer presents an elegant means of performing intensive
operations in the background and update the UI in a
thread-safe manner.

NSObject performSelectorInBackground:withObject:
and performSelectorOnMainThread:withObject:
waitUntilDone: combination also provides higher level
access to threads and task queues.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

NSTimer Sample

@implementat ion TimerSample : NSObject
− (v o i d) d r i v e r
{

[NSTimer s c h e d u l e d T i m e r W i t h T i m e I n t e r v a l : 0 . 1
t a r g e t : s e l f s e l e c t o r : @ s e l e c t o r (t a s k :)
u s e r I n f o : n i l r e p e a t s :NO] ;

}
− (v o i d) t a s k : (NSTimer ∗) t i m e r
{

// Perform background j o b and update UI
}
@end

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Fundementals
Comparison with Java
Sample Code
Advanced Concepts

NSObject performSelector Sample

− (v o i d) d r i v e r {
[s e l f p e r f o r m S e l e c t o r I n B a c k g r o u n d :

@ s e l e c t o r (t a s k :) w i t h O b j e c t : @” Test ”] ;
}
− (v o i d) t a s k : (i d) s t r {

// Set up a u t o r e l e a s e p o o l and work
[s e l f pe r fo rmSe lectorOnMainThread : @ s e l e c t o r (one :)

w i t h O b j e c t : myView w a i t U n t i l D o n e :NO] ;

}
−(v o i d) one : (i d) myView {

// Perform UI u p d a t e s .
}

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

UIApplicationDelegate
View
UIViewController

Anatomy of Application

UIApplicationDelegate

UIViewControllerUIWindow

UIViewUIViewUIView

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

UIApplicationDelegate
View
UIViewController

UIApplicationDelegate

The delegate that is used to maintain application wide state.

Used to display the primary view for the application.

Provides the callback methods for application life-cycle.

applicationDidFinishLaunching: - Use to build the
application UI.
applicationWillResignActive: - Use to handle application
interruption by incoming phone call.
applicationWillTerminate: - Use to handle application
termination (home button, exit button, . . .).

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

UIApplicationDelegate
View
UIViewController

UIView Components

UIWindow represents the application window on screen.

UIView components are added to UIWindow to build the
interface.

May be hand-coded or laid out using IB.

Easier to layout using IB.
Generates XML descriptor for loading pre-compiled and
configured UIView instances.
No code is generated.
Implement viewDidLoad method in view controller to perform
additional configuration of view.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

UIApplicationDelegate
View
UIViewController

UIViewController Classes

Handler for all events generated from UIView.

Custom UIView components are usually initialised through
their associated controller.

Usually the easiest way to access UIView components.

IB can be used to assciate fields (properties) with the
appropriate UIView components.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

Creating a Project

Launch Xcode

Choose File− >New Project

Select iPhone OS− >Application

Select View-Based Application

Save project to preferred location.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

Files of Interest

Look under the Classes folder.

Application delegate as <appname>AppDelegate

View controller as <appname>ViewController

IB file <appname>ViewController.xib under Resources folder.

Modify ViewController

Add button and label fields to header file.

Add a listener method to the header file.

Implement the listener in the implementation file.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

Files of Interest

Look under the Classes folder.

Application delegate as <appname>AppDelegate

View controller as <appname>ViewController

IB file <appname>ViewController.xib under Resources folder.

Modify ViewController

Add button and label fields to header file.

Add a listener method to the header file.

Implement the listener in the implementation file.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

View Controller Header

@ i n t e r f a c e CJUGViewContro l l e r : U I V i e w C o n t r o l l e r
{

UIButton ∗ button ;
U I L a b e l ∗ l a b e l ;
i n t count ;

}
@ p r o p e r t y (nonatomic , r e t a i n) I B O u t l e t

UIButton ∗ button ;
@ p r o p e r t y (nonatomic , r e t a i n) I B O u t l e t

U I L a b e l ∗ l a b e l ;
− (I B A c t i o n) l i s t e n e r : (i d) s e n d e r ;
− (I B A c t i o n) t e x t L i s t e n e r : (i d) s e n d e r ;
@end

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

View Controller Implementation

@implementat ion CJUGViewContro l l e r
@ s y n t h e s i z e button ;
@ s y n t h e s i z e l a b e l ;
− (I B A c t i o n) l i s t e n e r : (i d) s e n d e r
{

[l a b e l s e t T e x t : [NSStr ing s t r i n g W i t h F o r m a t :
@” Button c l i c k e d : %d ” , count ++]];

}
− (v o i d) d e a l l o c
{

[l a b e l r e l e a s e] ; [but ton r e l e a s e] ;
[s u p e r d e a l l o c] ;

}
@end

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

Add Views

Double-click <appname>ViewController.xib to launch IB.

Select Objects− >Inputs & Values in Library window.

DnD Round Rect Button to the View window.

Dnd Label to the View window.

Connect views to controller

CTRL− >Drag from File’s Owner to component.

Select the field corresponding to type of component.

CTRL− >Drag from button to File’s Owner.

Select the listener method.

Save IB and click Build and Go in Xcode to launch the
application in the simulator.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

Add Views

Double-click <appname>ViewController.xib to launch IB.

Select Objects− >Inputs & Values in Library window.

DnD Round Rect Button to the View window.

Dnd Label to the View window.

Connect views to controller

CTRL− >Drag from File’s Owner to component.

Select the field corresponding to type of component.

CTRL− >Drag from button to File’s Owner.

Select the listener method.

Save IB and click Build and Go in Xcode to launch the
application in the simulator.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

Create a memory leak

Introduce a memory leak in the listener method
implementation.

[l a b e l s e t T e x t : [[NSStr ing a l l o c]
i n i t W i t h F o r m a t : @” Button c l i c k e d : %d ” ,
count ++]];

Choose Run− >Start with Performance Tool− >Leaks to
launch the application with Instruments running.

Click the button a few times until you see Instruments
registering events.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

View Memory Leak

Click on the Extended Details button to the left of the Leaked
Blocks tab.

Click a row in the Leaked Blocks tab.

Scroll down the Extended Details area till you see your code
segment.

Double click the stack element to go to the appropriate
section in your source file.

Rakesh Vidyadharan iPhone SDK For Java Developers

Introduction
Objective-C

Application Components
Building an Application

Create Project
Project Files
Customise View
Profiling Application

Resources

iPhone Dev Center

iPhone Developer Forum

Apple Discussions Developer Forum

iPhone Developer Tips

Objective-C 2.0 Language

Rakesh Vidyadharan iPhone SDK For Java Developers

http://developer.apple.com/iphone/
https://devforums.apple.com/community/iphone
http://discussions.apple.com/forum.jspa?forumID=727
http://iphonedevelopertips.com/
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/chapter_1_section_1.html

	Introduction
	Objective-C
	Fundementals
	Comparison with Java
	Sample Code
	Advanced Concepts

	Application Components
	UIApplicationDelegate
	View
	UIViewController

	Building an Application
	Create Project
	Project Files
	Customise View
	Profiling Application

