
An Introduction to systemd

Erik Johnson

What is systemd?

● Replacement for sysvinit
● Manages your services/daemons
● Integrated logging (journal)
● Easy-to-write service files (units)
● Aims to standardize management of several system management tasks,

including (but not limited to) the following:
○ Network configuration

■ Static/DHCP IP configuration, bridging, DNS configuration, etc.

○ System Time/Timezone

○ Power management (ACPI)

○ Scheduled tasks

● A lot more

What is systemd?

● No, it’s systemd, uncapitalized
● The project is actually quite particular about the spelling
● There is an entire paragraph about the reason for the spelling on the project’s

homepage: https://www.freedesktop.org/wiki/Software/systemd/
● Spell it “systemd” or suffer the merciless wrath of pedants on the internet

Don’t you mean “Systemd” or “SystemD”

https://www.freedesktop.org/wiki/Software/systemd/

How systemd Differs from Traditional Init Systems

● Linux-only
○ Relies upon cgroups to track daemons and the processes they spawn, rather than manually

keeping track of PIDs

○ cgroups are a built-in feature of the Linux kernel which tracks processes when they fork/exec

other processes, allowing for service-level resource tracking (CPU, memory, etc.) and limits

○ cgroups can also be used in Linux to organize ps output to show process hierarchy: ps auxf

● Socket-activated services
○ systemd listens for activity on a network socket, FIFO, etc. and spawns an instance of a service

when activity is detected

● Intelligent service startup
○ Services which need to talk to network interfaces will wait for the network stack to be initialized

before starting

○ No more creative ordering of service startup to achieve this

How systemd Differs from Traditional Init Systems

● Unit files (instead of init scripts)
○ Does not spawn shells to start/stop services

○ Leads to quicker system startup/shutdown (though performance gain may be less noticeable on

newer hardware)

● Binary logging (a.k.a. “the journal”)
○ Each log entry is associated with its unit file, allowing for easy filtering of log messages

○ Can replace syslog, but also supports passing through log messages to a syslog daemon so you

get both kinds of logging

■ Many distros set this up for you out-of-the-box for convenience, so you may still see the

log files you expect to see in /var/log

● Targets instead of runlevels
○ Allows for more logical organization of services

○ multi-user.target is equivalent to SysV runlevel 3

○ graphical.target is equivalent to SysV runlevel 5

○ reboot.target is equivalent to SysV runlevel 6

○ network.target is reached when the network management stack is reached

○ There are a lot more, to see all active targets run: systemctl list-units --type=target

○ Add a unit to a target by adding a WantedBy in the unit file’s [Install] section

How systemd Differs from Traditional Init Systems

● Init scripts are shell scripts
○ With no standard way of initializing daemons, there are almost as many ways of managing init

scripts as there are Linux distributions

○ An init script written for SuSE Linux will need to be rewritten/tweaked to work in RHEL, Ubuntu,

etc.

● Since there are no competing implementations in systemd, unit files have a
standard syntax, making them more portable from one distribution to another

● Most distros have a library of additional functions to implement common tasks
(finding pid of daemon, killing all PIDs belonging to a daemon, getting status of
daemon), due to these features not being built into init

○ For example, RHEL <= 6 puts these in /etc/rc.d/init.d/functions

● These tasks are handled by systemd and do not require these helper functions

Unit Files vs. Init Scripts

● Unit files are easier to read/write
than init scripts

● An init script would not fit on this
slide without making the text so
small that a magnifying glass would
be required

● By contrast, a unit file is clear and
concise, using the well-known
“ini-file” format with bracketed
sections and key/value pairs:

Unit Files vs. Init Scripts
[Unit]
Description=OpenSSH Daemon
Wants=sshdgenkeys.service
After=sshdgenkeys.service
After=network.target

[Service]
ExecStart=/usr/bin/sshd -D
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=always

[Install]
WantedBy=multi-user.target

● Unit file location: /usr/lib/systemd
○ Do not edit these files, as they will be owned by individual software packages and will be

overwritten when these packages are upgraded

○ If you need to make changes to a unit file, copy it to the same path (relative to /usr/lib/systemd)

within /etc/systemd
■ Example: copy /usr/lib/systemd/system/sshd.service to

/etc/systemd/system/sshd.service and make your changes there

● Any modifications to unit files require that you restart systemd
○ systemctl daemon-reload

Unit Files

● systemctl (not to be confused with sysctl) is used to manage units
○ Starting a unit

■ systemctl start sshd.service

○ Stopping a unit

■ systemctl stop sshd.service

○ Restarting a unit

■ systemctl restart sshd.service

○ Enable a unit to start at boot

■ systemctl enable sshd.service

○ Disabling service so it does not run at boot

■ systemctl disable sshd.service

○ Displaying the contents of a unit file

■ systemctl cat sshd.service

Working With Units

Working With Units

● systemctl status is used to get information about a unit

% systemctl status sshd.service
● sshd.service - OpenSSH Daemon
 Loaded: loaded (/usr/lib/systemd/system/sshd.service; disabled; vendor
preset: disabled)
 Active: active (running) since Wed 2017-04-19 22:09:50 CDT; 8s ago
 Main PID: 833 (sshd)
 Tasks: 1 (limit: 4915)
 Memory: 752.0K
 CPU: 8ms
 CGroup: /system.slice/sshd.service
 └─833 /usr/bin/sshd -D

Apr 19 22:09:50 tardis systemd[1]: Started OpenSSH Daemon.
Apr 19 22:09:50 tardis sshd[833]: Server listening on 0.0.0.0 port 22.
Apr 19 22:09:50 tardis sshd[833]: Server listening on :: port 22.

ACPI Support

● systemd-logind can replace acpid for window managers that use it to handle
power-related ACPI events

● Edit /etc/systemd/logind.conf (or systemd-logind.conf, depending on the
distro) and set the following parameters:

○ HandlePowerKey – Power off system when power button is pressed

○ HandleSleepKey – Suspend system when sleep key is pressed

○ HandleLidSwitch – Suspend system when laptop lid is closed

● Run man logind.conf for more information on valid values for the above
parameters

● You'll need to restart systemd-logind.service for changes to this config file to
take effect

ACPI Support

● Full-fledged desktop environments such as GNOME, KDE, XFCE, etc. (which
have their own ACPI handlers) will not require this file to be configured, and will
likely have a GUI to configure ACPI event-handling

● Configuring systemd-logind is more helpful for users of tiling window managers
with no desktop environment

● Sleep (Suspend to RAM)
○ systemctl suspend

● Hibernate (Suspend to Disk)
○ systemctl hibernate

● /sbin/shutdown tasks
○ Reboot

■ systemctl reboot

○ Halt System (without powering off)

■ systemctl halt

○ Power Off System

■ systemctl poweroff

Sleep, Hibernate, Shutdown, etc.

● All services managed by systemd send log entries to the journal
○ This takes the place of traditional syslog

● systemd can be configured to send log entries to a socket, to which traditional
syslog daemons such as syslog-ng or rsyslog can listen

○ Most distros will set this up for you, but in distros like Arch this must be configured manually

● Journal entries are lost on reboot unless the directory /var/log/journal exists

The Journal

The Journal

● journalctl is used to interact with the journal
○ Show all messages by a specific executable

■ journalctl /full/path/to/executable

○ Show all messages by a specific PID (ex. 456)

■ journalctl _PID=456

○ Show all messages by a specific unit

■ journalctl _SYSTEMD_UNIT=sshd.service

○ Show all messages in journal

■ journalctl

● Similar to the tail command, the -f flag can be used to follow the journal, while
the -n flag can be used to limit results to a number of most recent messages

● Run man journalctl for the full list of options

Timers

● Timer units (ending in .timer) activate a service unit of the same name
○ e.g. foo.timer activates foo.service

● 2 types
○ Monotonic: activates at a fixed time/interval starting when the system is booted

■ Defined by setting one or more of OnActiveSec, OnBootSec, OnStartupSec,

OnUnitActiveSec, or OnUnitInactiveSec in the timer unit

○ Realtime: activates at a specific calendar event (like a cron job)

■ Defined by setting OnCalendar in the timer unit

● The systemd.timer and systemd.time manpages contain more documentation

Timer Example (foo.timer)

● Monotonic

[Unit]
Description=Run foo hourly and on boot

[Timer]
OnBootSec=15min
OnUnitActiveSec=1h

[Install]
WantedBy=timers.target

● Starts foo.service 15 minutes
after boot and hourly thereafter

● Realtime

[Unit]
Description=Run foo weekly

[Timer]
OnCalendar=weekly
Persistent=true

[Install]
WantedBy=timers.target

● Starts foo.service at midnight
every Monday morning

Timer Example (service unit)

● Here’s an example of the corresponding service unit (foo.service)
○ Notice there is no [Install] section
○ This is because it is the timer that is enabled/started using systemctl

[Unit]
Description=Update foo

[Service]
Type=simple
ExecStart=/usr/bin/update-foo

● Timers do not trigger at the precise time specified for the timer
● A timer setting called AccuracySec (default: 1min) helps establish a time range

in which the timer will trigger
○ A randomized value between the time the timer expires and the time period specified by

AccuracySec will be chosen

○ For timers which execute on a repeating schedule, this value will remain stable (i.e. it will not be

random for every repetition of the timer)

● This allows for a natural spreading of jobs executed by a number of hosts, to
prevent all of them running the same job and potentially overloading a database
or other shared resource

● For timers which must execute as close as possible to the specified time, set
AccuracySec=1us (1 microsecond) in the timer unit

Timer Accuracy

● Pros
○ Easy to start a job independently of the timer (service unit can be run with systemctl start)

○ Very granular control over the environment used by the command being executed by the service

unit (see systemd.exec manpage)

○ Job runs and their output are logged to the journal for easy access/troubleshooting

● Cons
○ Not as simple as configuring a cron job; two unit files need to be created instead of adding a

single line to the crontab

○ No built-in emailing of output from jobs

■ This can be achieved by creating a service unit that calls a script to send the message, and

then triggering it by adding an OnFailure to the service unit

■ Example: https://wiki.archlinux.org/index.php/Systemd/Timers#MAILTO

■ OnFailure is not limited to services activated by timers, it can be used on any service unit

Timers as a Cron Replacement

https://wiki.archlinux.org/index.php/Systemd/Timers#MAILTO

Transient Timers

● Using systemd-run, a transient timer and service can be created to run a single
command

○ e.g. systemd-run --on-active=1m touch /tmp/foo

○ --on-active=, --on-boot=, --on-startup=, --on-unit-active=, and --on-unit-inactive= can be used

to make the timer monotonic, while --on-calendar= can be used to make the timer realtime

● The same accuracy mechanic that applies to regular timers also applies to
transient timers

○ By default, the timer will execute a random amount of time between when the specified time is

reached, and one minute after

○ To modify the accuracy, use --timer-property=AccuracySec=

■ e.g. --timer-property=AccuracySec=100ms

● Some unit files naturally lend themselves to multiple instances (e.g. openvpn)
● Unit files which support multiple instances contain an @ sign before the suffix

○ e.g. openvpn-client@.service

● When this sort of unit file is used, the instance name goes after the @ sign
○ e.g. openvpn-client@vpn_name.service

● In the unit file, the instance name is represented by the %i placeholder
○ There are a number of other placeholders that can be used in unit files, the systemd.unit

manpage contains a section called SPECIFIERS

Instance Names

[Unit]
Description=OpenVPN tunnel for %I
After=syslog.target network-online.target
Wants=network-online.target
Documentation=man:openvpn(8)
Documentation=https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage
Documentation=https://community.openvpn.net/openvpn/wiki/HOWTO

[Service]
Type=notify
PrivateTmp=true
WorkingDirectory=/etc/openvpn/client
ExecStart=/usr/bin/openvpn --suppress-timestamps --nobind --config %i.conf
CapabilityBoundingSet=CAP_IPC_LOCK CAP_NET_ADMIN CAP_NET_RAW CAP_SETGID CAP_SETUID CAP_SYS_CHROOT
CAP_DAC_OVERRIDE
LimitNPROC=10
DeviceAllow=/dev/null rw
DeviceAllow=/dev/net/tun rw
ProtectSystem=true
ProtectHome=true

[Install]
WantedBy=multi-user.target

Unit File Example with Instance Name

● systemd provides a PAM session module (enabled by default on virtually all
distros which use systemd) which will launch a per-user instance of systemd

% ps aux | grep 'systemd --user' | grep -v grep
erik 7839 0.0 0.0 55812 7196 ? Ss Mar24 0:09 /usr/lib/systemd/systemd --user

● Per-user unit files are placed in ~/.config/systemd/user/
● systemctl, journalctl, systemd-run, etc. all support a --user flag which tells

those commands to connect to the per-user systemd instance
● Users can run their own services, timers, etc. without privileged access

○ All processes spawned by a per-user systemd instance will be run as the user of course, and not

the root user

Per-user systemd Instances

● systemd provides a component called systemd-networkd which, when enabled
(systemd-networkd.service) will allow network interfaces to automatically be
configured as they are detected

● This is not enabled by default, and in fact RHEL/CentOS by default uses their
own service unit to manage network interfaces (keeping their old configuration
method from prior RHEL/CentOS release cycles)

● Network configuration files provided by system packages are found in
/lib/systemd/network, while new ones should be placed in
/etc/systemd/network to avoid conflicts

● Documentation for these configuration files can be found in the
systemd-networkd manpage, which lists a couple other manpages to read

Network Management

● Interface configuration files must end in .network
● DHCP Example

 [Match]
 Name=enp1s0

 [Network]
 DHCP=ipv4

● Static IP example

 [Match]
 Name=enp1s0

 [Network]
 Address=10.1.10.9/24
 Gateway=10.1.10.1

Configuring Network Interfaces

NOTE: globbing is supported in the Name match. This
allows for USB network interfaces (which may be
named differently depending on the port they are
plugged into) to be matched

● Interface configuration files must end in .netdev
● Bridge example

 [NetDev]
 Name=br0
 Kind=bridge

● Unlike .network files, globbing is not supported
○ We’re creating a specific interface, so we need a unique name

● Documentation can be found in the systemd.netdev manpage
● A .network file would still be necessary to assign an IP address to the bridge

Configuring Virtual Interfaces

● Instead of configuring DHCP or a static IP address, the Bridge option is used to
bind the interface to the bridge

 [Match]
 Name=enp1s0

 [Network]
 Bridge=br0

● Remember, the bridge interface is the one with the IP address assigned to it

Binding an Interface to a Bridge

● Any changes to configuration files requires a restart of
systemd-networkd.service

● For DNS servers assigned via DNS, you will also need to enable and start
systemd-resolved.service and then symbolically link /etc/resolv.conf to
/run/systemd/resolve/resolv.conf
○ ln -s /run/systemd/resolve/resolv.conf /etc/resolv.conf

○ It may be a good idea to back up the old /etc/resolv.conf first

● The current status of the network interfaces can be viewed by running
networkctl

More on Network Management

● systemd mainpage: https://www.freedesktop.org/wiki/Software/systemd/
● Arch Wiki links:

○ https://wiki.archlinux.org/index.php/Systemd

○ https://wiki.archlinux.org/index.php/Systemd-networkd

○ https://wiki.archlinux.org/index.php/Systemd/User

○ https://wiki.archlinux.org/index.php/Init/Rosetta

Helpful Links

https://www.freedesktop.org/wiki/Software/systemd/
https://wiki.archlinux.org/index.php/Systemd
https://wiki.archlinux.org/index.php/Systemd
https://wiki.archlinux.org/index.php/Systemd-networkd
https://wiki.archlinux.org/index.php/Systemd-networkd
https://wiki.archlinux.org/index.php/Systemd/User
https://wiki.archlinux.org/index.php/Systemd/User
https://wiki.archlinux.org/index.php/Init/Rosetta
https://wiki.archlinux.org/index.php/Init/Rosetta

