
Fail2Ban
"…FAILURE IS DELAY, NOT DEFEAT…" – DENIS WAITLEY

Agenda

 What is fail2ban?

 My story

 And then there was DoS

 A look at fail2ban

 Summary

Intrusion Detection vs Prevention

What is fail2ban?

Fail2Ban is an intrusion prevention software framework that protects computer

servers from brute-force attacks.

Fail2Ban scans log files and bans IP addresses of hosts that have too many

failures within a specified time window.

Think of it as a dynamic firewall. It detects incoming connection failures, and

dynamically adds a firewall rule to block that host after too many failures.

My Story

 On my Linux servers, I do not allow username/password authentication

 Users must use SSH with PKI

 But I still didn't like the barrage of remote login attempts

 My fear was an unknown zero-day, race condition, buffer overflow or
other vulnerability was still a threat

 So I looked for intrusion detection and prevention software

 I found, installed, learned and started using fail2ban to block unwanted
ssh connection attempts

 I was right. We fell victim to a previously unknown Denial of Service
vulnerability

Under Attack

 In May of 2016, we suffered a SLOW denial of service attack

 Something was causing our web site to hang every 5-15 minutes

 Restarting Apache would fix the problem, but the site would just hang

again in 5-15 minutes

 We did not have an unusually high volume of HTTP GET/POSTs

 We had what seemed like an unusually high amount of Baidu spider traffic

Baidu Spider

 Baidu ignores your robot.txt file, and they do whatever the h*ll they want

 Baidu was 60% of all our bot traffic, 50% more than all the others combined

 Baidu connections primarily come from180.76.15.*, but switches to other IP

ranges if not having any success with that IP range

 "Chinese search engines such as Baidu … will merrily spider your sites to

oblivion if you let them" - https://searchenginewatch.com/sew/news/2067357/bye-bye-crawler-blocking-parasites

 I recommend you block Baidu

https://searchenginewatch.com/sew/news/2067357/bye-bye-crawler-blocking-parasites

Attack Investigation

 Blocking Baidu traffic did not stop the hanging

 When the site was hung

 All ServerLimit httpd daemons had been allocated

 None of the httpd daemons were consuming any CPU time

 All httpd daemons were in the flock_lock_file_wait state

 We finally noticed an unusual HTTP GET request

 It was a request to our shopping cart

 They were all "delete" type requests

 It was supposedly from a googlebot

 Why is a bot sending random delete requests to our shopping cart?

 Blocking the 3 IP addresses used by these unusual requests stopped the
hanging!

Example requests

 64.150.181.58 - - [13/May/2016:11:46:29 -0500] "GET
/checkout/cart/delete/id/14816/uenc/aHR0cDovL3d3dy5uYXRpb25hbGN
5Y2xlLmNvbS9jYXRhbG9nL3Byb2R1Y3Qvdmlldy9pZC82MzMv/ HTTP/1.1" 200
1724015 "http://www.domain.com/catalog/product/view/id/633/"
"Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)"

 69.64.95.112 - - [13/May/2016:12:19:09 -0500] "GET
/checkout/cart/delete/id/14835/uenc/aHR0cDovL3d3dy5uYXRpb25hbGN
5Y2xlLmNvbS9uMTM1MS5odG1s/ HTTP/1.1" 200 1688239
"http://www.domain.com/n1351.html" "Mozilla/5.0 (compatible;
Googlebot/2.1; +http://www.google.com/bot.html)"

Attack Forensics

 Apache logs indicated they were Googlebot requests; but they were sending a bogus
User-Agent string

 The IP address of the "Googlebot" request mapped back to bluechipbacklinks.com

 Blue Chip Back Links is a shady outfit that sells you expired domains to create SEO PBNs
(Private Blog Networks). They are used to create backlinks to a website to increase
Google page ranking

 Each of these HTTP GET requests would HANG one httpd daemon forever by putting it into
a flock_lock_file_wait state

 We were getting roughly one of these DoS HTTP requests every 10-20 seconds

 Very difficult to:

 Identify why so many httpd daemons were getting allocated

 Realize that httpd daemons were running but hung

 Figure out a way to show which/if HTTP daemons were hung

 Finally what was causing them to hang

Diverting Attack

 Manually blocked 3 IP addresses with iptables

 Created a fail2ban filter to identify and block these unusual HTTP requests

 Remove manual iptable entries

 Monitor fail2ban and iptables

 Review system logs for this and other persistent threats that needed to be

blocked

Let's Look at fail2ban

Features

 client/server

 multi-threaded

 autodetection of datetime format

 lots of predefined support

 services – sshd, apache, qmail, proftpd, sasl, asterisk, squid, vsftpd, assp, etc

 actions – iptables, tcp-wrapper, shorewall, sendmail, ipfw, etc

Requirements

 Python >= 2.4

 Optional

 iptables

 shorewall

 tcp_wrappers

 mail

 gamin

Limitations

 Reaction time – fail2ban is a log parser, so it cannot do anything before
something is written to the log file.

 Syslog daemons normally buffer output, so you may want to disable buffering
in your syslog daemon

 fail2ban waits 1 second before checking log files for changes, so it's possible to
get more failures than specified by maxretry

 A local user could initiate a DoS attack by forging syslog entries with the
logger(1) command

 The pattern or regex to match the time stamp is currently not documented,
and not available for users to read or set. This is a problem if your log has a
timestamp format that fail2ban doesn't expect, since it will then fail to match
any lines

Components

Directories

 /etc/fail2ban/action.d

 /etc/fail2ban/fail2ban.d

 /etc/fail2ban/filter.d

 /etc/fail2ban/jail.d

Commands

 fail2ban-server

 fail2ban-client

 fail2ban-regex

Files

 /etc/fail2ban/fail2ban.conf

 /etc/fail2ban/fail2ban.local

 /etc/fail2ban/jail.conf

 /etc/fail2ban/jail.local

Configuration Files

Global Configuration Files

 fail2ban.conf

Main configuration options. File should

not be modified, customizations are done

in fail2ban.local

 jail.conf

Declaration(s) of jails that define a

combination of Filters and Actions

Local Customizations

 fail2ban.local

Settings you would like to override in

fail2ban.conf. The .conf file is parsed first

and then .local settings are applied

 jail.local

New or custom jails to override default

jail.conf declarations

Configuration Order

 fail2ban.conf

 fail2ban.d/*.conf (alphabetical)

 fail2ban.local

 fail2ban.d/*.local (alphabetical)

 jail.conf

 jail.d/*.conf (alphabetical)

 jail.local

 jail.d/*.local (alphabetical)

Terminology

fail2ban

Software that bans & unbans IP addresses after a defined number of failures

(un)ban

(Remove)/Add a firewall rule to (un)block an IP address

jail

A jail is the definition of one fail2ban-server thread that watches one or more log file(s), using
one filter and can perform one or more actions

filter

Regular expression(s) applied to entries in the jail’s log file(s) trying to find pattern matches
identifying brute-force break-in attempts

action

One or more commands executed when the outcome of the filter process is true AND the
criteria in the fail2ban and jail configuration files are satisfied to perform a ban

fail2ban-server

 A Python program that is

 multi-threaded

 listens on Unix sockets for commands

 The server

 reads log file(s) defined in jails

 applies a filter defined for the jail and found in filter.d

 analyzes them using failregex defined in the the filter

 executes actions defined in actions.d

fail2ban-client

 A command line utility to configure and control the fail2ban-server

 status [JAIL]

 start/stop (all jails)

 start/stop [JAIL]

 reload [JAIL]

 ping

 set/get

Useful commands

Show list of jails
fail2ban-client status
Status
|- Number of jail: 6
`- Jail list: apache-auth, block-spider, magento-checkout, my-sshd, wp-attacks, wp-
login-attack

Status of specific jail
fail2ban-client status my-sshd
Status for the jail: my-sshd
|- Filter
| |- Currently failed: 23
| |- Total failed: 7519
| `- File list: /var/log/secure
`- Actions

|- Currently banned: 25
|- Total banned: 1906
`- Banned IP list: 200.72.2.200 178.33.189.220 181.49.211.34 212.131.189.111

27.120.94.9 63.247.85.18 185.93.185.239 190.4.63.56 163.172.209.37 221.210.200.245
221.194.47.208 200.216.31.244 221.194.47.249 37.187.137.141 190.181.39.\
15 121.18.238.114 185.78.29.33 119.249.54.88 110.45.144.55 119.249.54.75 71.183.108.45
200.216.31.20 119.249.54.68 181.143.226.67 198.245.49.221

Useful commands

List ACTIONS defined for a JAIL
fail2ban-client get wp-attacks actions

The jail wp-attacks has the following actions:

iptables-multiport

UNBAN an IP
fail2ban-client set my-sshd unbanip 200.72.2.200

200.72.2.200

BAN an IP
fail2ban-client set my-sshd banip 200.72.2.200

200.72.2.200

fail2ban-regex

 A command line utility to:

 Test date format matching

 Develop and test new "Failregex" strings

 Develop and test new "ignoreregex" strings

 Check if your regular expression(s) are parsing log file for lines or files that identify

brute-force break-in/attack attempts

 Test fail2ban filter files on log files

 Use to expand hierarchical shortcuts

fail2ban-regex testing

Synopsis

fail2ban-regex [options] LOG REGEX [ignoreregex]

Example using command line strings for LOG and REGEX

fail2ban-regex 'Oct 9 05:28:52 magento sshd[1304]: Invalid user km999 from 52.208.45.232'
'^.*sshd\[\d*\]: Invalid user .* from <HOST>$'

Running tests
=============

Use failregex line : ^.*sshd\[\d*\]: Invalid user .* from <HOST>$
Use single line : Oct 9 05:28:52 magento sshd[1304]: Invalid user k...

Results
=======

Failregex: 1 total
|- #) [# of hits] regular expression
| 1) [1] ^.*sshd\[\d*\]: Invalid user .* from <HOST>$
`-

Ignoreregex: 0 total

Date template hits:
|- [# of hits] date format
| [1] (?:DAY)?MON Day 24hour:Minute:Second(?:\.Microseconds)?(?: Year)?
`-

Lines: 1 lines, 0 ignored, 1 matched, 0 missed [processed in 0.00 sec]

fail2ban-regex testing

Synopsis

fail2ban-regex [options] LOG REGEX [ignoreregex]

Example using LOG file and command REGEX

fail2ban-regex /var/log/secure '^.*sshd\[\d*\]: Invalid user .* from <HOST>$'

Running tests
=============

Use failregex line : ^.*sshd\[\d*\]: Invalid user .* from <HOST>$
Use log file : /var/log/secure
Use encoding : UTF-8

Results
=======

Failregex: 81 total
|- #) [# of hits] regular expression
| 1) [81] ^.*sshd\[\d*\]: Invalid user .* from <HOST>$
`-

Ignoreregex: 0 total

Date template hits:
|- [# of hits] date format
| [549] (?:DAY)?MON Day 24hour:Minute:Second(?:\.Microseconds)?(?: Year)?
`-

Lines: 549 lines, 0 ignored, 81 matched, 468 missed [processed in 0.20 sec]

fail2ban-regex testing

Example using LOG file and Filter REGEX
fail2ban-regex /var/log/secure /etc/fail2ban/filter.d/my-sshd.local

Running tests
=============
Use failregex filter file : my-sshd, basedir: /etc/fail2ban
Use maxlines : 10
Use log file : /var/log/secure
Use encoding : UTF-8

Results
=======

Failregex: 283 total
|- #) [# of hits] regular expression
| 2) [81] ^.*sshd\[\d*\]: Invalid user .* from <HOST>$
| 11) [7] ^\s*(<[^.]+\.[^.]+>)?\s*(?:\S+)?(?:kernel: \[*\d+\.\d+\])?(?:@vserver_\S+
)?(?:(?:\[\d+\])?:\s+[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?|[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?(?:\[\d+\])?:?)?\s(?:\[ID \d+ \S+\])?\s*Received disconnect fr\
om <HOST>: 3: \S+: Auth fail$
| 12) [28] ^\s*(<[^.]+\.[^.]+>)?\s*(?:\S+)?(?:kernel: \[*\d+\.\d+\])?(?:@vserver_\S+
)?(?:(?:\[\d+\])?:\s+[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?|[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?(?:\[\d+\])?:?)?\s(?:\[ID \d+ \S+\])?\s*Received disconnect f\
rom <HOST>: 11: Bye Bye$
| 13) [76] ^\s*(<[^.]+\.[^.]+>)?\s*(?:\S+)?(?:kernel: \[*\d+\.\d+\])?(?:@vserver_\S+
)?(?:(?:\[\d+\])?:\s+[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?|[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?(?:\[\d+\])?:?)?\s(?:\[ID \d+ \S+\])?\s*Received disconnect f\
rom <HOST>: 11:\s*$
| 14) [71] ^\s*(<[^.]+\.[^.]+>)?\s*(?:\S+)?(?:kernel: \[*\d+\.\d+\])?(?:@vserver_\S+
)?(?:(?:\[\d+\])?:\s+[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?|[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?(?:\[\d+\])?:?)?\s(?:\[ID \d+ \S+\])?\s*Connection closed by \
<HOST>\s*$
| 15) [17] ^\s*(<[^.]+\.[^.]+>)?\s*(?:\S+)?(?:kernel: \[*\d+\.\d+\])?(?:@vserver_\S+
)?(?:(?:\[\d+\])?:\s+[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?|[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?(?:\[\d+\])?:?)?\s(?:\[ID \d+ \S+\])?\s*Did not receive ident\
ification string from <HOST>\s*$
| 17) [3] ^\s*(<[^.]+\.[^.]+>)?\s*(?:\S+)?(?:kernel: \[*\d+\.\d+\])?(?:@vserver_\S+
)?(?:(?:\[\d+\])?:\s+[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?|[\[\(]?sshd(?:\(\S+\))?[\]\)]?:?(?:\[\d+\])?:?)?\s(?:\[ID \d+ \S+\])?\s*User .+ from <HOST> no\
t allowed because none of user's groups are listed in AllowGroups\s*$
`-

Ignoreregex: 0 total

Date template hits:
|- [# of hits] date format
| [549] (?:DAY)?MON Day 24hour:Minute:Second(?:\.Microseconds)?(?: Year)?
`-

Lines: 549 lines, 0 ignored, 283 matched, 266 missed [processed in 1.80 sec]
Missed line(s): too many to print. Use --print-all-missed to print all 266 lines

fail2ban-regex CL options

 --print-all-matched

Print all matched lines

 --print-all-missed

Print all missed lines, no matter how many there are

 -v

Verbose output. Shows timestamp when each IP was banned and the date format

style matched

Regular Expressions

 Lines in the log files that fail2ban will process:

 Must have a date/time stamp

 Must have an IP address of a host (You can’t ban a host without an IP address!)

 In order for a log line to match your failregex, it actually has to match in two parts

 The beginning of the line has to match a timestamp pattern or regex, and

 The remainder of the line has to match your failregex. If the failregex is anchored with a leading ^, then the
anchor refers to the start of the remainder of the line, after the timestamp and intervening whitespace

 You must use the special <HOST> tag in your failregex as a placeholder for fail2ban to capture the IP
address from the log line

 fail2ban is real good at identifying date/time information from a log line no matter how it is
formatted

 In the action scripts, the tag <ip> will be replaced by the IP address of the host that was
matched with the <HOST> tag

Custom Filters

 Copy and tweak an existing file instead of trying to create your .local filter

from scratch

 ignoreregex is a regular expression of IP address(es) that fail2ban should

ignore. For example, machines on your LAN and localhost (127.0.0.1)

 [INCLUDES] are definitions of regular expression shortcuts (regex snippets)

available for use in your filter

 Regular expressions heavily use hierarchical shortcuts for complex pattern

matching

Hierarchical shortcuts

Consider a failregex line:

^%(__prefix_line)srefused connect from \S+ \(<HOST>\)\s*$

Here is a shortcut defined in common.conf:

__prefix_line = \s*%(__bsd_syslog_verbose)s?\s*(?:%(__hostname)s)?(?:%(__kernel_prefix)s

)?(?:@vserver_\S+)?%(__daemon_combs_re)s?\s%(__daemon_extra_re)s?\s*

And

_daemon = \S*

__hostname = \S+

__kernel_prefix = kernel: \[*\d+\.\d+\]

__daemon_combs_re = (?:%(__pid_re)s?:\s+%(__daemon_re)s|%(__daemon_re)s%(__pid_re)s?:?)

__pid_re = (?:\[\d+\])

__daemon_re = [\[\(]?%(_daemon)s(?:\(\S+\))?[\]\)]?:?

__daemon_extra_re = (?:\[ID \d+ \S+\])

__bsd_syslog_verbose = (<[^.]+\.[^.]+>)

Hierarchical shortcuts

This failregex:

^%(__prefix_line)srefused connect from \S+ \(<HOST>\)\s*$

Becomes:

^\s*(<[^.]+\.[^.]+>)?\s*(?:\S+)?(?:kernel: \[*\d+\.\d+\])?(?:@vserver_\S+)?(?:(?:\[\d+\])?:\s+

[\[\(]?\S*(?:\(\S+\))?[\]\)]?:?|[\[\(]?\S*(?:\(\S+\))?[\]\)]?:?(?:\[\d+\])?:?)?\s(?:\[ID\d+

\S+\])?\s*refused connect from \S+ \(<HOST>\)\s*$

Regex Tips

 Use fail2ban-regex to expand hierarchical shortcuts for you!

 Use command line LOG and REGEX to develop your initial failregex

 Use actual LOG file with your command line REGEX to test against the actual log file

 Codify your REGEX into a custom .local filter

 Test your filter using fail2ban-regex with the actual LOG file and your FILTER file

 Copy an existing filter .conf file instead of developing from scratch

 Remember to name your filter file using a .local extension

A jail definition

 Must have 3 things

 A logpath

 A filter

 An action

 To use the jail

 It must also be enabled

Jail options

Name Default Description

enabled false All jails are disabled until explicitly enabled

protocol tcp Protocol to be banned

port 0:65535 Ports to be banned

maxretry 3 Number of matches (i.e. value of the counter)

which triggers ban action on the IP.

findtime 600 sec The counter is set to zero if no match is found

within "findtime" seconds.

bantime 600 sec Duration (in seconds) for IP to be banned for.

Negative number for "permanent" ban.

Basic jail.local entry

[ssh-iptables]

#enabled = false

enabled = true

logpath = /var/log/secure

filter = sshd

action = iptables[name=SSH, port=ssh, protocol=tcp]

mail-whois[name=SSH, dest=yourmail@mail.com]

maxretry = 5

Custom jail.local entry

[my-sshd]

enabled = true

logpath = /var/log/secure

filter = my-sshd

banaction = iptables

port = ssh

findtime = 86400

bantime = 86400

maxretry = 3

action vs actionban vs banaction

 banaction – used in your jail definition (e.g. jail.local). Defines which <action>.conf or
<action>.local file to use in the action.d directory. A variable used in in action_* definitions.

 actionban – used in the action.d/<action>.conf or <action>.local file. The actual linux
command(s) used to perform a ban if this banaction is used by a jail.

 action – Mapped to one of the following values in jail.local. Defines everything you want
fail2ban to do when the decision to ban is performed

 action_ – ban only

 action_mw – ban & send email with whois to destemail

 action_mwl – ban & send email and relevant log lines to destemail

 action_xarf – ban & send xarf email to abuse contact of IP address & include relevant log lines

 action_cf_mwl – ban IP on CloudFlare & send email with whois report and log lines

 action_badips – Report ban via badips.com, and use as blacklist

Using Fail2Ban

 Install software

 Create a jail definition in jail.local

 Specify logpath of log file(s) to monitor

 Specify filter to use

 Specify action(s) to perform

 Override default settings as necessary

 Test jail using fail2ban-regex:

 fail2ban-regex logpath /path/to/filter.[conf|local]

 debug

 enable jail

 Start Jail

 fail2ban-client reload

 fail2ban-client start <jail>

jail.local

[sshd]
enabled = true
banaction = iptables

paths-fedora.conf
before = paths-common.conf
syslog_authpriv = /var/log/secure

paths-common.conf
sshd_log = %(syslog_authpriv)s

jail.conf
before = paths-fedora.conf
logpath = %(syslog_authpriv)s
filter = %(__name__)s
banaction = iptables-multiport
action = %(action_)s
action_ = %(banaction)s[name=%(__name__)s,

bantime="%(bantime)s", port="%(port)s",
protocol="%(protocol)s", chain="%(chain)s"]

[sshd]
logpath = %(sshd_log)s

Combining everything

jail.conf
action_ = %(banaction)s

[name=%(__name__)s,

bantime="%(bantime)s",

port="%(port)s",

protocol="%(protocol)s",

chain="%(chain)s"]

which becomes:

action_ = iptables

[name=my-sshd,

bantime="86400",

port="ssh",

protocol="tcp",

chain="INPUT"]

jail.local
#global setting

action = %(action_)s

#jail definition

[my-sshd]

enabled = true

port = ssh

banaction = iptables

filter = my-sshd

logpath = /var/log/secure

findtime = 86400

bantime = 86400

maxretry = 3

iptables.conf
[INCLUDES]

before = iptables-common.conf

iptables-common.conf
chain = INPUT

protocol = tcp

port = ssh

blocktype = REJECT –reject-with cimp-port-unreachable

iptables = iptables <lockingopt>

lockingopt =

fail2ban magic
__name__ = my-sshd (filter name)

name = my-sshd (jail name)

<HOST> => ip

action.d/iptables.conf
actionban = <iptables> –I f2b-<name> 1 –s <ip> -j <blocktype>

iptables –I f2b-my-sshd 1 –s 1.2.3.4 -j REJECT –reject-with

cimp-port-unreachable

Action Tags

 <iptables>

 <blocktype>

 <chain>

 <returntype>

 <port>

 <protocol>

 <logpath>

 <keyfile>

 <domain>

 <ttl>

 <sender>

 <sendername>

 <dest>

 <failures>

 <category>

 <email>

 <apikey>

 <service>

 <matches>

 <cftoken>

 <mailcmd>

 <mailargs>

 <message>

 <userid>

 <lines>

 <tmpfile>

 <srcport>

 <myip>

 <tcpflags>

 <maxbufferage>

 <minreportinterval>

 <grepopts>

 <getcmd>

 <mnwurl>

 <nsupdatecmd>

 <loglines>

Predefined Action Tags

Tag Description

ip IPv4 IP address to be banned

name Name of jail

__name__ Name of filter

failures Number of times the failure occurred

ipfailures As per failures, but total of all failures for that ip address across all jails from the fail2ban
persistent database. Therefore the database must be set for this tag to function

ipjailfailures As per ipfailures, but total based on the IPs failures for the current jail

time UNIX (epoch) time of the ban

matches concatenated string of the log file lines of the matches that generated the ban. Many
characters interpreted by shell get escaped to prevent injection, nevertheless use with
caution

ipmatches As per matches, but includes all lines for the IP which are contained with the fail2ban
persistent database. Therefore the database must be set for this tag to function

ipjailmatches As per ipmatches, but matches are limited for the IP and for the current jail

Actions

 It is possible to specify several actions, on separate lines. For example

 You can react to a SSH break-in attempt by first adding a new firewall rule to

block the host

 Then retrieve some information about the offending host using whois

 And finally sending an e-mail notification.

 Or maybe you just want to received a notification on your Jabber account

when someone accesses the page /donotaccess.html on your web server.

Predefined banactions

 dummy – Just log IP bans/unbans to a log file

 iptables – watch a single TCP/IP port

 iptables-multiport – watches multiple port (like http & https)

 iptables-multiport-log – just like iptables-multiport, but also logs dropped

packets

 sendmail – Send banned IP address by email

 sendmail-whois – Send whois info for banned IP by email

 sendmail-buffered – Send banned IP addresses after each <line>

addresses are banned (default 5)

Action Options

 These are various options for an action. They are defined in the
<action>.conf or <action>.local file

 actionstart – the command(s) issued when first starting the action

 actionstop – the command(s) issue to stop the action

 actioncheck – the command(s) executed before each actionban command

 actionban – the command(s) executed when banning an IP

 actionunban – the command(s) execute when unbanning an IP

My Settings

 findtime = 86400 (1 day)

 bantime = 86400 (1 day)

 maxretry = 3

Remediation Results

 Our website has been operating without incident since attack

 We are consistently always blocking 80 IP addresses at any one time for SSH

 However, we’re blocking about 3200-3300 IPs for a WordPress login vulnerability

 Baidu is still trying, but failing

 97% of bans attempt to exercise the XMLRPC vulnerability

 2.5% of bans attempt to login using SSH

 0.5% is everything else

 I don't see any more DoS attempts

Our Fail2ban Jails

Jail Description

magento-checkout Block specially crafted GET requests that hang httpd

apache-auth Block hack attempts on the WordPress XMLRPC vulnerability

my-sshd Custom jail to identify and block additional Failregex's that

the default installation does not catch

wp-login-attack Protect WordPress from brute-force password attempts

wp-attack Protect WordPress from common vulnerability probes

block-baidu Blocks the Chinese bot called "Baidu“

apache-

fakegooglebot

Blocks “fake” googlebot scans

Apache-fake-googlebot

[apache-fakegooglebot]

port = http,https

logpath = /var/log/httpd/mag*access.log

maxretry = 1

findtime = 172800

bantime = 172800

enabled = true

ignorecommand =

%(ignorecommands_dir)s/apache-

fakegooglebot <ip>

 Fakegooglebot command

 Reverse DNS lookup of <ip> to

get name

 Forward lookup of name to get

googleip

 Compare googleip to <ip>

 If the IPs match, a real

googlebot, return 0 (False Fake)

 If IPs don’t match, a fake

googlebot, return 1 (True Fake)

iptable bans

 Apache-Auth: 5

 Apache-fakegooglebot: 7

 Block-spider (Baidu): 10

 Magento-checkout: 4

 SSH blocks: 58

 WP attack: 5

 WP login attack: 3268

iptables

iptables -L -n
Chain INPUT (policy ACCEPT)
target prot opt source destination
f2b-my-sshd tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:22
f2b-wp-attack tcp -- 0.0.0.0/0 0.0.0.0/0 multiport dports 80,443
f2b-block-baidu tcp -- 0.0.0.0/0 0.0.0.0/0 multiport dports 80,443
f2b-apache-auth tcp -- 0.0.0.0/0 0.0.0.0/0 multiport dports 80,443
f2b-wp-login-attack tcp -- 0.0.0.0/0 0.0.0.0/0 multiport dports 80,443
f2b-magento-checkout tcp -- 0.0.0.0/0 0.0.0.0/0 multiport dports 80,443
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:22
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:80
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:443
REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited

Chain FORWARD (policy ACCEPT)
target prot opt source destination
REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

iptables

Chain f2b-apache-auth (1 references)

target prot opt source destination

REJECT all -- 99.89.46.24 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 99.59.119.114 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 99.252.102.14 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 99.174.237.99 0.0.0.0/0 reject-with icmp-port-unreachable

<130 more entries deleted>

REJECT all -- 96.40.32.101 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 92.16.149.24 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 90.231.113.135 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 88.182.180.124 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 86.122.112.218 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 83.243.219.101 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 83.160.122.141 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 83.153.247.131 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 83.114.107.18 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 83.112.206.86 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 107.77.106.24 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 1.136.96.136 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 1.124.48.23 0.0.0.0/0 reject-with icmp-port-unreachable

RETURN all -- 0.0.0.0/0 0.0.0.0/0

Chain f2b-block-baidu (1 references)

target prot opt source destination

REJECT all -- 180.76.15.162 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 180.76.15.137 0.0.0.0/0 reject-with icmp-port-unreachable

RETURN all -- 0.0.0.0/0 0.0.0.0/0

Chain f2b-magento-checkout (1 references)

target prot opt source destination

RETURN all -- 0.0.0.0/0 0.0.0.0/0

Chain f2b-my-sshd (1 references)

target prot opt source destination

REJECT all -- 74.50.142.90 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 61.178.245.159 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 52.174.42.74 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 51.254.46.199 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 37.187.143.217 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 27.251.35.202 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 221.194.47.249 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 221.194.47.229 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 221.194.47.224 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 221.194.47.208 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 211.144.74.5 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 204.140.17.62 0.0.0.0/0 reject-with icmp-port-unreachable

<30 more entries deleted>

REJECT all -- 113.161.82.184 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 103.235.234.134 0.0.0.0/0 reject-with icmp-port-unreachable

RETURN all -- 0.0.0.0/0 0.0.0.0/0

Chain f2b-wp-attack (1 references)

target prot opt source destination

RETURN all -- 0.0.0.0/0 0.0.0.0/0

Chain f2b-wp-login-attack (1 references)

target prot opt source destination

REJECT all -- 85.12.192.40 0.0.0.0/0 reject-with icmp-port-unreachable

REJECT all -- 178.219.88.0 0.0.0.0/0 reject-with icmp-port-unreachable

RETURN all -- 0.0.0.0/0 0.0.0.0/0

