
Linux Audit-Subsystem Design Documentation

for Kernel 2.6

Version 0.1

IBM/SUSE LINUX Confidential until Release of SLES9

Changelog

Version Date Authors Reviewer Changes, Problems, Notes

0.1 2004−03−30 Thomas

Biege

Jan Beulich − reflect new system hook design

− revised ”How will events be generated?” section

− revised ”What Information will be kept per Event?” section

− revised ”Kernel Patch” section

− erased ”Single Point of Entry...” section

− revised ”Audited System Calls” section

− revised ”LAuS components”

− redraw some pictures

Copyright Notes

SUSE LINUX and its logo are registered trademarks of SUSE LINUX AG.
IBM and IBM logo are trademarks or registered trademarks of International Busi-
ness Machines Corporation in the United States, other countries, or both.
Linux is a registered trademark of Linus Torvalds.
Solaris is a registered trademark of Sun Microsystems.
UNIX is a registered trademark of The Open Group in the United States and
other countries.
Intel and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.
Other company, product, and service names may be trademarks or service marks
of others.

The distribution and modification of this document is protected by the GNU

Free Documentation Licence [4].
Copyright c© 2004 SUSE LINUX AG (is a Novell company)

Copyright c© 2004 Novell, Inc

Abstract

This paper describes the design of the Linux Audit Subsystem (LAuS), its com-
ponents, its configuration and its CAPP compliance. LAuS was developed by
Novell and SUSE LINUX to make Linux more secure and to attain the CC EAL4
certificate.

Contents

1 Introduction 3

2 CAPP Requirements 4
2.1 Audit Data Generation FAU GEN.2 4
2.2 User Identity Association FAU GEN.2 8
2.3 Audit Review FAU SAR.1 . 8
2.4 Restrict Audit Review FAU SAR.2 9
2.5 Selectable Audit Review FAU SAR.3 9
2.6 Selective Audit FAU SEL.1 . 9
2.7 Guarantees of Data Availability FAU STG.1 9
2.8 Action in Case of Audit Data Loss FAU STG.3 10
2.9 Prevention of Audit Data Loss FAU STG.4 10
2.10 Management of the Audit Trail FMT MDT.1 10
2.11 Management of audited Events FMT MDT.1 10
2.12 Reliable Time Stamps FPT STM.1 10

3 High Level Design 11
3.1 Why a Kernel-Patch? . 11
3.2 How can a Process be attached/detached to/from LAuS? 11
3.3 How will Events be generated? . 12

3.3.1 Kernel Source . 13
System Calls . 14
Filesystem Hooks . 14
Netlink Sockets . 14
Process Creation and Termination 14

3.3.2 User Source . 15
The PAM Framework . 16
Enhanced System-Applications 16

3.4 What Information will be kept per Event? 17
3.5 How will a unbroken Audit Trail be guaranteed? 17
3.6 How does the Audit Record reach the User-Space? 18
3.7 How will the Audit Record be written? 18
3.8 What about post-processing the Audit Record? 18

1

3.9 Who can configure what in which way? 19
3.10 How is the configuration transferred to the Kernel? 19

4 Low Level Design 21
4.1 LAuS Components . 21

4.1.1 Kernel Patch . 22
Login ID . 22
Audit ID . 22
Task Structure . 22
Audited System Calls . 23
Filesystem Hooks . 25
Handling I/O Control Messages 26
Handling IP Device and Routing Changes 27
Device File . 27
LAuS I/O Messages . 28
Filter . 28

4.1.2 Audit Daemon . 29
4.1.3 Audit Tools . 30
4.1.4 Enhanced PAM Library and the PAM Module 30
4.1.5 Enhanced System Applications 31

4.2 LAuS Configuration . 32
4.2.1 Audit Daemon . 32

4.3 LAuS Log Files . 32
4.3.1 Contents of Audit Record 32
4.3.2 Raw Log Format . 32
4.3.3 Cooked Log Format . 33

A Abbreviations 34

B List of Figures 36

C Bibliography 37

2

Chapter 1

Introduction

The purpose of this document is to describe the Linux Audit Subsystem (LAuS)
low-level design and how it meats the requirements of Common Criteria EAL4
SUSE LINUX Enterprise Server 9.

Additionally this document serves as a communication platform for the de-
velopment teams of IBM and Novell/SUSE to clarify design decisions and answer
open questions.

3

Chapter 2

CAPP Requirements

The Controlled Access ProtectionProfile (CAPP) version 1d as released by the
Information Systems Security Organization [5] lists requirements for an audit
subsystem in a conforming system.

This chapter describes how the CAPP requirements are met in the LAuS
implementation, along with additional requirements introduced in the Security
Target (ST).

2.1 Audit Data Generation FAU GEN.2

CAPP specifies a set of audit data generation requirements in section FAU GEN.1.
In general, there are two mechanisms used by LAUS to generate audit data.

Messages can be generated in user–space by explicitly using laus log() and
related library functions, and from kernel–space by intercepting system calls along
with their arguments and return values, and generate audit events based on this
information as specified in the audit configuration files.

The following table shows how the events required by CAPP are implemented
by the LAuS system.

Explicitly generated audit messages are listed in the format “Event TYPE subtype”,
system calls generated uses the format “syscall name”. Note that some syscalls
have several closely related variants, of which only the first variant is listed in
the table.:

• chmod includes fchmod

• open includes creat

• chown includes fchown, lchown, chown32, fchown32, lchown32

• setuid includes seteuid, setreuid, setresuid, setuid32, seteuid32, setreuid32,
setresuid32

4

• setgid includes setegid, setregid, setresgid, setgid32, setegid32, setregid32,
setresgid32

Note that read and write system calls are not audited, because all DAC checks
are done when opening the file, and also because the read/write calls do not
correspond directly to program actions due to buffering done by the stdio library.

CAPP
Section

Component Event LAuS implementation

5.1.1 FAU GEN.1 Start-up and shut-
down of the audit
functions

Events AUDIT start, AU-
DIT stop (from auditd)

5.1.2 FAU GEN.2 None
5.1.3 FAU SAR.1 Reading of informa-

tion from the audit
records.

syscall open (on the audit
log files)

5.1.4 FAU SAR.2 Unsuccessful attempts
to read information
from the audit record

Like FAU SAR.1 (syscall
open), but with a negative
result

5.1.5 FAU SAR.3 None
5.1.6 FAU SEL.1 All modifications to

the audit configura-
tion that occur while
the audit collection
functions are operat-
ing.

Events AUDCONF reload
(generated by auditd);
syscalls open, link, unlink,
rename, truncate (write
access to configuration
files)

5.1.7 FAU STG.2 None
5.1.8 FAU STG.3 Actions taken due to

exceeding of thresh-
old.

Event AUDIT disklow
(generated by auditd);
execution of administrator-
specified alert program

5.1.9 FAU STG.4 Actions taken due to
the audit storage fail-
ure

Event AUDIT diskfull (gen-
erated by auditd); ex-
ecution of administrator-
specified alert program; all
audited actions are blocked
(process sleeps until space
becomes available)

– FCS CKM.1
FCS CKM.2
FCS CKM.2
FCS COP.1

None

5.2.1 FDP ACC.1 None

5

5.2.2 FDP ACF.1 All requests to per-
form an operation on
an object covered by
the SFP (filesystem
object or IPC object).

syscalls chmod, chown, setx-
attr, link, mknod, open,
rename, truncate, unlink,
rmdir, mount, umount, ms-
gctl, msgget, semget, semctl,
semop, symlink, removex-
attr, shmget, shmctl ; details
include identity of object

5.2.3 FDP RIP.2 None
5.2.4 Note 1 None
5.3.1 FIA ATD.1 None
5.3.2 FIA SOS.1 Rejection or accep-

tance by the TSF of
any tested secret.

Events AUTH success,
AUTH failure (from PAM
framework, “authentica-
tion” subtype)

5.3.3 FIA UAU.1 All use of the authen-
tication mechanism.

Events AUTH success,
AUTH failure (from PAM
framework, “authentica-
tion” subtype)

5.3.4 FIA UAU.7 None
5.3.5 FIA UID.1 All use of the user

identification mech-
anism, including the
identity provided
during successful
attempts

Events AUTH success,
AUTH failure (from PAM
framework, subtypes
“authentication” and
“bad ident”); details in-
clude origin of attempt
(terminal or IP address as
applicable)

5.3.6 FIA USB.1 Success and failure of
binding user security
attributes to a subject
(success and failure to
create a process).

LOGIN audit record (from
pam laus.so module or
aurun); syscalls fork and
clone

5.4.1 FMT MSA.1 All modifications of
the values of security
attributes of named
objects (files and IPC
objects).

syscalls chmod, chown, setx-
attr, msgctl, semctl, shmctl

6

5.4.2 FMT MSA.3 Modifications of the
default setting of per-
missive or restrictive
rules. All modifi-
cations of the initial
value of security at-
tributes.

syscalls umask, open

5.4.3 FMT MTD.1 All modifications to
the values of TSF
data (create, delete
and clear the audit
trail).

syscalls open, rename, link,
unlink, truncate (of audit
log files)

5.4.4 FMT MTD.1 All modifications to
the values of TSF data
(modify or observe the
set of audited events).

syscalls open, link, rename,
truncate, unlink (of audit
config files); event AUD-
CONF reload.

5.4.5 FMT MTD.1 All modifications to
the values of TSF
data (initialize and
modify user attributes
other than authentica-
tion data).

“gpasswd” audit text mes-
sages (from shadow suite),
details include new value of
of the TSF data

5.4.6 FMT MTD.1 All modifications to
the values of TSF data
(initialize and mod-
ify user authentication
data).

“gpasswd” audit text mes-
sages (from shadow suite);
attempts to bypass trusted
programs detected through
audited syscalls open, re-
name, truncate, unlink

5.4.7 FMT REV.1 Revocation of user at-
tributes

Event: “gpasswd” audit
text messages (from shadow
suite); attempts to bypass
trusted programs detected
through audited syscalls
open, rename, truncate,
unlink

5.4.8 FMT REV.1 Revocation of object
attributes

system calls chmod, chown,
setxattr, unlink, truncate,
msgctl, removexattr, semctl,
shmctl

7

5.4.9 FMT SMR.1 Modifications to the
group of users that are
part of a role.

Event: “gpasswd:” audit
text messages “group mem-
ber added”, “group member
removed”, “group adminis-
trators set”, “group mem-
bers set” (from trusted pro-
grams in shadow suite).

5.4.9 FMT SMR.1 Every use of the
rights of a role (Addi-
tional/Detailed)

The user’s actions result in
audited syscalls and the use
of trusted programs that are
audited. Details include the
login ID, the origin can be
determined from the associ-
ated LOGIN record for this
login ID and audit session
ID.

5.5.1 FPT AMT.1 Execution of the test
of the underlying ma-
chine and the result of
the test.

Event: ADMIN amtu (gen-
erated by AMTU testing
tool)

5.5.2 FPT RVM.1 None
5.5.3 FPT SEP.1 None
5.5.4 FPT STM.1 Changes to the time. Event: syscalls

(do)settimeofday, adj-
timex

– FTP ITC.1 Set-up of trusted
channel.

Event: syscall exec (of
stunnel program)

2.2 User Identity Association FAU GEN.2

To keep track of the owner of a process and to keep an audit trail for an interactive
user session a “Login ID“ is associated with every process. The “Login ID“ gets
inherited if a process spawns a new process. For example, this enables the Security
Officer (SO) to determine the real owner of a malicious process even if the user
changes his “User IDs“.

2.3 Audit Review FAU SAR.1

LAuS provides a user space tool, aucat, that translates the on-disk binary format
to a human readable format at the request of an authorized administrator.

8

2.4 Restrict Audit Review FAU SAR.2

The audit log file is protected by DAC controls so that only an authorized ad-
ministrator is able to read the logs. The audit tools are also protected by DAC
controls so that only authorized administrators can invoke the tools.

2.5 Selectable Audit Review FAU SAR.3

LAuS provides a user space tool, augrep, that allows the administrator to filter
the audit records to only display requested events. The administrator is able to
filter on:

• user

• group

• syscall

• file

• file operations

• outcome (success/failure)

• remote hostname

• remote hostname address

• audit ID

• syscall arguments

2.6 Selective Audit FAU SEL.1

LAuS gives the administrator the ability to select the events to audit. This is
done by the administrator editing the filter configuration file of the audit dae-
mon and then running auditd -r to notify the audit daemon of the change in
configuration. The audit daemon in turn notifies the kernel of the new auditing
policy.

2.7 Guarantees of Data Availability FAU STG.1

LAuS prevents unauthorized deletion and modification of audit records via DAC
controls.

9

2.8 Action in Case of Audit Data Loss FAU STG.3

If the system runs out of disk space, the audit daemon will stop reading from
the device file which will result in filling up the buffers of the audit subsystem.
Subsequently, the kernel will block any process trying to enqueue new audit events
for delivery to the audit daemon. To ensure that this blocking happens as soon as
possible, the audit daemon sets the message queue length to zero when detecting
an out-of-space condition.

2.9 Prevention of Audit Data Loss FAU STG.4

To avoid the loss of data, multiple ”bin files” are used. Each file has a fixed size.
If one file is full, it will be locked and processed by external commands specified
in the configuration file. During that time, the next bin file is used for storing
audit records. If the external command fails (exits with a non-zero exit status),
the SO will be notified through syslog and the audit system will be suspended.

2.10 Management of the Audit Trail FMT MDT.1

The LAuS log files can be added to the set of audited objects to detect malicious
modifications of the audit trail. Furthermore, only the superuser is able to access
the audit trail due to the appropriate DAC settings of the file(s).

2.11 Management of audited Events FMT MDT.1

A user can not modify the set of audit events that is generated due to his or her
activity unless he is the superuser. Only the superuser is able to communicate
with the kernel and to modify the configuration files of the audit daemon.

2.12 Reliable Time Stamps FPT STM.1

LAuS uses the system time and only the superuser is able to modify the system
time.

10

Chapter 3

High Level Design

The sections of this chapter try to clarify the abstract behavior of the Linux
Audit subsystem. The sections are ordered by data flow to make it more logical
to the reader to understand.

(Please note that every action to configure or modify the audit subsystem has
to be done with capability CAP SYS ADMIN (root user))

3.1 Why a Kernel-Patch?

The vanilla 2.6 Linux kernel does not provide a mechanism to trace syscalls in the
desired way, nor does it contain the capability to track processes and generate an
audit trail. Due to this lack of functionality the Linux kernel needs to be patched.
The patch enhances internal kernel structures to keep track of the process and
provides an interface to the user space by defining I/O control commands and a
device file.

Beside file–system DAC controls of the audit device file the kernel patch re-
stricts access by verifying if the caller of an I/O control command has the capa-
bility CAP SYS ADMIN.

3.2 How can a Process be attached/detached

to/from LAuS?

A process can only attach itself to the audit subsystem and only if it has root
(CAP SYS ADMIN) privileges. Attaching is done by either directly using I/O
control commands or by using LAuS library functions. Several attributes, such
as the “Login ID“ and the “Audit ID“ are bound to the attached process.

Whenever an audited process forks a child process, the child process inherits
some attributes of the parent process to make the audit trail continuous.

11

Likewise, the only instance that can detach a process is the process itself, and
only if it has root privileges (CAP SYS ADMIN). When detaching, all session
information (such as the the Login ID and Audit ID) is lost.

Another way of detaching is to exit. Whenever a process terminates/aborts
it will be detached from the audit subsystem, too.

In addition, a process is permitted to suspend and resume auditing. Again,
this is achieved through I/O control commands to the audit subsystem, and
requires administrative privilege (CAP SYS ADMIN). This functionality is for
the benefit of trusted applications that wish to generate a single high-level audit
event describing their actions, instead of several system call events.

The major difference between suspending and detaching is that the former
retains all session information, including the “Login ID“ and “Audit ID“. The
suspend flag is not inherited to child processes, that is, if a process suspends
auditing and forks a new child process, that child will be subject to auditing as
usual.

A trusted application such as the passwd utility, for instance, suspends au-
diting before updating the password database, and generates a single record in-
dicating the (attempted) password change afterwards.

3.3 How will Events be generated?

There are two kinds of sources for an audit event, the kernel and user applications.
The main source is the kernel space. System calls, file access and network layer
actions are handled by the kernel. Netlink operations are logged on completion.
System call arguments are normally logged inside the call at the beginning of the
function, return codes are logged at the end of the system call.

• adjtimex(2) arguments will differ at beginning and end of the call.

• chroot(2) needs to process the filename in the context of the original file–
system root, not the changed one after the system call.

• execve(2) never returns, and the process image will be gone as soon as the
syscall is finished.

• ioctl(2) arguments will differ at beginning and end of the call.

• rename(2) needs to save the first argument before the call, it will be invalid
after completion of the syscall.

• unlink(2) needs to process the filename argument before the file is deleted.

Access to file–system objects is logged indirectly through hooks in the Virtual
File System (VFS).

12

User applications have the option to generate their own, more abstract, audit
records, as a replacement or enhancement for the low-level syscall-based records.
For example, the passwd(1) utility should write a single notification of the pass-
word change instead of several low-level operations on the password files. To do
this, trusted programs can suspend syscall auditing and send user messages to
the kernel using the audit device. The kernel will add its headers and attributes,
then pass the message on to the audit daemon through the device file.

Every event generated by the kernel contains information on the process on
behalf of which the kernel generates the event, including the current UID, GID,
the “Login ID“ and “Audit ID“, etc. This fixed portion is followed by a variable
data portion, depending on the message type.

Event messages are placed into a queue, from where they can be retrieved
by the audit daemon through the read system call, one record at a time. If the
length of the queue exceeds a certain prespecified limit (adjustable via the sysctl
kernel interface), any processes trying to generate new events will be blocked until
there is space in the queue again. The default maximum size of the queue is 1024
entries with 8 KB per entry.

3.3.1 Kernel Source

Kernel Buffer

Event:

System Call

Event:

Netlink

Audit Hooks

Filtering

Device File

Audit

Daemon
Logs

read(),

configure binary log

data

Filter table

Event:

VFS

augrep, aucat, ...

Figure 3.1: Data Flow: Kernel Sources

13

The kernel patch creates several hooks for monitoring process creation/termination,
VFS usage, and system calls entry/return, as well as a hook to track modifications
of the system’s network configuration.

System Calls

As stated before a sysem call will be intercepted at the beginning of the code and
at the various return points (different errors). System call events will be generated
for every traced process as long as the filter policy does not discard it. The
filter policy can be a simple yes/no statement, but complex Boolean expressions
involving properties of the process, as well as the system call arguments, are
possible, too.

If the system call passes the filter rules, an audit event will be generated.
This event data includes information about the process, system call number, the
return value (outcome), and a TLV (tag/length/value) encoded representation of
the system call arguments, where applicable. (For instance, the argument data
to a number of ioctl calls are included, but data passed to the write system call
is generally not included).

Filesystem Hooks

To log the usage of filesystem objects the kernel patch relies on a prerequisite
patch to the VFS code modifying functions like open, truncate, chdir and so
on. The modifications of these functions are similiar to those of the system calls;
intercept functions are inserted at the beginning and end of a monitored VFS
function.

Netlink Sockets

The Linux kernel network code can be controlled either by using the ioctl(2)
system call of by using a netlink socket. The first case is handled as described
above in sub-section “System Calls“. The latter case needs special handling. To
become aware of netlink messages the kernel patch needs to apply another hook
in the kernel. LAuS only observes netlink routing messages because these are the
ones we are interested in. To get the result of the message processing the audit
hook is triggered right after the message had been processed. The message data,
message length and the outcome will be logged.

Process Creation and Termination

The audit subsystem can generate audit events for process creation (including
processes generated by fork and clone, but also for kernel threads), and pro-
cess termination. For both events, filter policies can be configured to select just
specific events (such as processes exiting due to a signal).

14

3.3.2 User Source

Kernel Buffer

Device File

Audit
Daemon

Logs

read()
binary log

data

System
Application

PAM
System

Audit
Subsystem

ioctl()
ioctl()

Figure 3.2: Data Flow: User Sources

In addition to the kernel, user space applications should be able to generate
their own, more descriptive, audit records. This type of records is called “Audit
User Messages“. Two types of user applications need this special feature:

a. applications that authenticate users and/or change privileges

b. applications that change the configuration of the system

The first group of applications can be served by a special PAM library and a
PAM module. The PAM library and the module attach the current process
and set various attributes like the “Login ID“, the terminal name, hostname, IP
address and alike through a special

”
Audit Login Message

”
. The PAM module can

serve as an authentication, account or session module. It is used as workaround
for applications that handle authentications apart from PAM but use the PAM
framework for other tasks.

The latter group of applications needs to be modified manually to handle the
LAuS interface to the kernel and to send the “Audit User Messages“.

15

The PAM Framework

The PAM module is used together with the modified PAM library patch to acti-
vate the audit subsystem for the current application. The module is responsible
for the following tasks:

• open the audit device file

• if configured to do so, detach the current audit data

• attach the current process to the audit subsystem

• close the audit device file

The PAM Library is patched to write audit logs for success and failure re-
turned by the PAM module stacks called on behalf of applications. The library
framework is responsible for the following tasks:

• open the audit device file

• emit an “Audit User Message“ indicating success or failure

• on successful authentication, set the login UID for the process and emit an
“Audit Login Message“

• close the audit device file

The kernel does not care about the format of the “Audit User Messages“, it
just adds the attributes and header to it and puts it in the audit record queue.

All system applications that handle authentication for changing user privileges
are linked against the PAM library. Therefore the PAM library provides a central
point for handling LAuS operations.

Enhanced System-Applications

All system applications that change the system configuration need to be modified
to notify the SO about the changes they made. This does not need system call
auditing, so the trusted application can suspend auditing and perform their own
logging. To accomplish this task just a few lines of code need to be added:

1. open LAuS interface

2. suspend auditing

3. format user message and send it to the kernel

4. close LAuS interface

16

3.4 What Information will be kept per Event?

Additional information is generated and stored with each event. The following
list gives an overview (please note: some informations are accessed indirectly by
referencing the “Audit ID“):

• Timestamp: Every audit record is timestamped

• Login ID: User ID of the user authenticated by the system

• Audit ID: unique 32 bit identifier

• Login Message:

– Hostname: Remote host name in case of remote login

– IP Address: IP address of remote host in case of remote login

– Service: Name of service that authenticates the user

• Text Message:

– arbitrary User-Text

• System Call:

– System call name

– Arguments

– Result/Outcome

3.5 How will a unbroken Audit Trail be guar-

anteed?

To guarantee a continuous audit trail, three mechanism will be used:

• Putting audited processes to sleep when the audit record buffer is full or
something is wrong with the log file.

• pre-allocated bin files

• or alternatively: monitoring disk-space while in stream- or file- mode and
notify the SO if threshold is reached.

17

3.6 How does the Audit Record reach the User-

Space?

First the audit daemon has to register itself to LAuS to receive all audit records.
The audit records themselves are written to an internal queue and can be read,
one at a time, from there by invoking the read system call on the audit device
file. The audit daemon is the only process that is able to read these records.
Every record read will be deleted from the queue to free memory for new ones.

3.7 How will the Audit Record be written?

After the audit daemon reads an audit record from the device file it will add
another header containing just a timestamp. The payload data will not be pro-
cessed in any way. Therefore the audit log just contains the time and the binary
data that was directly read from the kernel.

3.8 What about post-processing the Audit Record?

Tools like aucat use various library functions to parse the binary audit log and
output it in a human readable form. These library calls can be used by every
application that wants to postprocess the log files.

18

3.9 Who can configure what in which way?

Text
Editor

auditd -r
(reconfigure)

Config
Files

Audit
Daemon

Audit Subsystem

1.)
modify

2.)
notify

3.)read

4.)
update

Figure 3.3: Data Flow: Configuration

By using the DAC controls of the file–system only the users (typically root)
with capability CAP DAC OVERRIDE or CAP DAC READ SEARCH are al-
lowed to access and modify the configuration file of LAuS. The only component
of LAuS that uses configuration files is the audit daemon. The audit daemon
needs a main configuration file for defining thresholds and corresponding actions
etc, and two files for defining filter rules and filter object sets.

These configuration files need to be modified directly by using a text edi-
tor and can be made effective by running auditd -r. This command sends a
reload message (HUP signal) to the running auditd process, which will re-read
the configuration and reload it into the kernel. DAC controls ensure that only
the root user is able to modify these files and use auditd -r, additionally the
audit subsystem only accepts messages generated by user root.

3.10 How is the configuration transferred to the

Kernel?

The audit daemon reads the configuration files, parses them and sends the filter
rules to the kernel by using a special I/O control command. The filter rules

19

are part of the kernel now and can only be modified or cleared by a user with
sufficient administrative privilege (CAP SYS ADMIN).

20

Chapter 4

Low Level Design

4.1 LAuS Components

The core component of LAuS are two kernel patches to enable file–system hooks
and system call logging (partially based on the former), filtering, checking network
traffic and keeping track of user activities. In addition, it contains an audit dae-
mon to handle kernel messages, several command line tools, LAuS API libraries,
a modified PAM subsystem, a PAM module, and modified system applications.
The following diagram is an overview of the LAuS components:

Linux Kernel 2.6 with LAuS

Applications with
PAM support

login,
passwd,

useradd, ...
Audit

Daemon

Configuration

Log Data

augrepaucat

Library API

Library API

ioctl()read()

Library API

Figure 4.1: LAuS Overview

21

4.1.1 Kernel Patch

The native Linux kernel does not contain any mechanism to monitor system calls
and to keep track of user activities. Therefore the Linux kernel has to be enhanced
to provide the SO with an audit trail.

The kernel patch modifies the process task structure for storing additional
information/attributes, adds intercept functions and an additional flag to the
ptrace framework, provides an interface to the user space, and applies filter poli-
cies. All these tasks will be described in the following subsections.

Login ID

In order to fulfill the CAPP requirements, the kernel must be modified to track the
“Login ID“ for each process. The “Login ID“ is part of the Audit Login Message

that is sent to the kernel and includes information like hostname, IP address,
terminal name, and the name of the executable. The “Login ID“ is stored in
the structure aud process and should not be confused with the “Audit ID“. The
“Login ID“ is the numerical Unix UID of the user logged in, and the “Audit ID“
is a unique session identifier. Therefore, there can be multiple sessions with the
same “Login ID“ when a user has logged in several times simultaneously, but
each will have a different “Audit ID“.

Audit ID

In addition to the “Login ID“, an “Audit ID“ is stored in the structure aud process

to identify the trail of a process tree. The “Audit ID“ is unique for each session
and will be assigned when the session initiator (i.e. login or sshd) attaches to
the audit subsystem. If the process spawns a child process, this ID gets inherited,
and therefore stays the same for all processes launched as part of this session.

Task Structure

The process task structure as defined in linux-2.6.4/include/linux/sched.h is
enhanced by a void pointer.

#if defined(CONFIG_AUDIT) || defined(CONFIG_AUDIT_MODULE)

void *audit;

#endif /* CONFIG_AUDIT */

This void pointer is used by the audit device driver to point to audit related data.
The audit driver manages the following data for every audited process:

struct aud_process {

struct list_head list;

uid_t login_id;

22

unsigned int audit_id;

/* Auditing suspended? */

unsigned char suspended;

};

If an audited process forks, the child process will receive a fresh aud process

structure, and the audit uid and audit id fields will be copied from the parent
process. The suspended field is initialized to zero, to ensure that new processes
launched from a trusted program start with auditing active by default even if the
parent has suspended it.

Audited System Calls

LAuS catches only a subset of syscalls provided by the Linux kernel but all syscalls
needed for CAPP/EAL4.

Before we began with a list of traced system calls we should look at an example
of a patched settimeofday system call.

--- /usr/src/linux-2.6.4-29/kernel/time.c

+++ 2.6.4-29-LAuS/kernel/time.c

@@ -28,6 +28,7 @@

#include <linux/timex.h>

#include <linux/errno.h>

#include <linux/smp_lock.h>

+#include <linux/audit.h>

#include <asm/uaccess.h>

/*

@@ -74,13 +75,14 @@

struct timespec tv;

if (!capable(CAP_SYS_TIME))

- return -EPERM;

+ return audit_intercept(AUDIT_settimeofday, NULL, NULL),

audit_result(-EPERM);

if (get_user(tv.tv_sec, tptr))

return -EFAULT;

tv.tv_nsec = 0;

+ audit_intercept(AUDIT_settimeofday, &tv, NULL);

do_settimeofday(&tv);

- return 0;

+ return audit_result(0);

}

23

#endif

Syscall Name analyzed? needed?
access yes yes
adjtimex yes yes
brk yes yes
capset yes yes
chdir yes yes
chmod yes yes
chown yes yes
chown32 yes yes
clone yes yes
create yes yes
create module yes yes
delete module yes yes
execve yes yes
fchmod yes yes
fchown yes yes
fchown32 yes yes
fork yes yes
fremovexattr yes yes
fsetxattr yes yes
init module yes yes
ioctl yes yes
ioperm yes yes
iopl yes yes
ipc (msgctl, msgget, sem-
ctl, semget, shmat, shmctl,
shmget)

yes yes

lchown yes yes
lchown32 yes yes
link yes yes
lremovexattr yes yes
lsetxattr yes yes
mkdir yes yes
mknod yes yes
mount yes yes
open yes yes
ptrace yes yes
removexattr yes yes

24

rename yes yes
rmdir yes yes
semtimedop yes yes
setfsgid yes yes
setfsgid32 yes yes
setfsuid yes yes
setfsuid32 yes yes
setgid yes yes
setgid32 yes yes
setgroups yes yes
setgroups32 yes yes
setregid yes yes
setregrid32 yes yes
setresgid yes yes
setresgid32 yes yes
setresuid yes yes
setresuid32 yes yes
setreuid yes yes
setreuid32 yes yes
settimeofday yes yes
setuid yes yes
setuid32 yes yes
setxattr yes yes
socketcall (bind) yes yes
swapon yes yes
symlink yes yes
truncate yes yes
truncate64 yes yes
umask yes yes
unlink yes yes
utime/utimes yes yes
vfork yes yes

Filesystem Hooks

To trace the access to file–system objects several functions in the VFS code
were intercepted similar to the system call hooks. The intercept functions are
wrapper inside C macros like FSHOOK BEGIN and FSHOOK END. The description of
FSHOOK BEGIN will serve as an example here.

25

1. copy arguments

2. check who is registered for this call

2. pass information about call to registered instance

Handling I/O Control Messages

For specific I/O control messages, the audit module will intercept the data passed
by the caller and include it in the audit event. For all other I/O control messages,
data is not included in the audit event.

The following network-related I/O control messages have data included in the
audit event:

SIOCADDRT: add routing table entry
SIOCDELRT: delete routing table entry
SIOCSIFLINK: set iface channel
SIOCSIFFLAGS: set flags
SIOCSIFADDR: set PA address
SIOCSIFDSTADDR: set remote PA address
SIOCSIFBRDADDR: set broadcast PA address
SIOCSIFNETMASK: set network PA mask
SIOCSIFMETRIC: set metric
SIOCSIFMEM: set memory address (BSD)
SIOCSIFMTU. set MTU size
SIOCSIFNAME. set interface name
SIOCADDMULTI. Multicast address lists
SIOCDELMULTI.
SIOCSIFHWADDR. set hardware address
SIOCSIFENCAP:
SIOCSIFSLAVE:
SIOCSIFPFLAGS. set/get extended flags set
SIOCDIFADDR: delete PA address
SIOCSIFHWBROADCAST: set hardware broadcast addr
SIOCSIFBR: Set bridging options
SIOCSIFTXQLEN: Set the tx queue length
SIOCDARP: delete ARP table entry
SIOCSARP: set ARP table entry
SIOCSIFMAP: Set device parameters
SIOCADDDLCI: Create new DLCI device
SIOCDELDLCI: Delete DLCI device

26

Handling IP Device and Routing Changes

The Linux kernel supports two mechanisms for configuring IP network devices,
and IP routing:

• through ioctl(2)

• through AF NETLINK sockets

I/O control messages are handled by identifying the messages we’re interested
in, and copying the data that comes with them. Netlink messages are the more
advanced mechanism of network configuration, and is used by utilities such as
ip(8). Netlink messages are sent through sockets of type AF NETLINK, where the
destination is identified by numeric IDs such as NETLINK ROUTE. Alternatively,
netlink messages can be delivered to specific processes.

The only recipient ID relevant to our TOE is NETLINK ROUTE. Delivery to spe-
cific processes is not relevant to auditing network configuration. CAP NET ADMIN

privilege is required to create a netlink socket capable of receiving/sending NETLINK
ROUTE messages. A netlink message consists of one or more parts, each compris-
ing a header of type struct nlmsghdr, followed by data specific to the recipient
ID. The common data part of all NETLINK ROUTE messages consists of a struct

rtgenmsg containing the address family.
The IPv4 routing code receives these messages by registering a handler for

PF INET with the rtnetlink component. Similarly, the IPv6 code registers a han-
dler for PF INET6.

The audit code taps into the rtnetlink code, specifically into rtnetlink rcv skb

which takes care of delivering NETLINK ROUTE messages through these handlers.
The function delivers each portion of the message individually, and sends the
outcome of the code back to the calling sockets. The call hooks to the audit
module are invoked after the netlink message has been processed, passing the
message itself, the message length and the outcome for inspection by the audit
module.

If the audit module decides to generate an audit event for the netlink message,
the event generated includes the contents of the message and the outcome.

Device File

To enable bidirectional communication between user space and kernel space LAuS
provides a character device file. Communication happens via ioctl(2) calls and by
using read(2). The latter function call is used to read audit records from kernel
buffers and i.e. write them to disk.

The format of the audit record will be explained in detail in section “Contents
of Audit Record“, the ioctl(2) commands are explained in the next subsection.

The LAuS device file is a character device named /dev/audit and has the
major number 10 (misc devices) and minor number 224.

27

LAuS I/O Messages

The following table shows the ioctl(2) commands, their arguments, and their
description.

Command Argument Description
AUIOCATTACH none Attach current process to

audit subsystem
AUIOCDETACH none detach current process from

audit subsystem
AUIOCSUSPEND none Suspend auditing for cur-

rent process
AUIOCRESUME none Resume auditing for current

process
AUIOCCLRPOLICY none Clear policy
AUIOCSETPOLICY struct audit policy Add policy
AUIOCCLRFILTER none Clear filter
AUIOCSETFILTER struct audit filter Add filter
AUIOCIAMAUDITD none Register current process as

audit daemon
AUIOCSETAUDITID none Set Audit-ID
AUIOCLOGIN struct audit login Generate login message
AUIOCUSERMESSAGE struct audit message Generate user-specified

message

Filter

To reduce the I/O load and to reduce the amount of logging data the kernel is able
to perform filtering by using predicates and logical operations. Basic predicates
can be combined to user defined and more complex predicates like the following
example illustrates:

predicate is-one-or-two = eq(1) || eq(2);

The predicates can be used by defining a filter or by attaching the predicate to a
syscall.

filter uid-is-one-or-two = is-one-or-two(uid);

...

syscall sleep = is-one-or-two(arg0);

The filter is used to bind the predicate to a so called target (syscall argument,
process property, syscall result, etc.)

28

To handle a class of objects more easily the audit filter allows to specify a so
called ‘set‘.

set sensitive = { /etc, /root, /usr }

...

predicate is-sensitive = prefix(@sensitive);

The example above illustrates the use of sets. A set can be referenced by a
leading ‘@‘ sign. The man page audit-filter.conf(5) gives a more detailed
description the filtering scheme.

4.1.2 Audit Daemon

The audit daemon performs the following functions

• announce himself to the audit-subsystem

• turns kernel auditing on and off

• sends the audit filter policy to the kernel audit-subsystem

• reads the audit records from the device file

• writes the audit records to the disk (file-, stream-, bin-mode)

• monitors the current state of the system for potential audit record loss

• notifies the system administrator via syslog in case of impending audit data
loss

The audit daemon provides three ways of writing audit records to disk. The
choice of which method to use is configurable by the administrator. The choices
are ‘file mode‘, ‘bin mode‘ and ‘stream mode‘. In file mode, data is written
pretty much the same way as syslogd(8) does, i.e. records are appended to a
file that is allowed to grow arbitrarily until culled by the administrator. Culling
may happen either by truncating the file, or by moving it aside and sending the
daemon the hangup signal (SIGHUP).

If any error occurs when writing to the file, auditd will go into error mode.
Depending on the configuration, auditd can perform different actions in response
to an error, ranging from totally ignoring it to halting the system.

If no log destinations are specified in audit.conf, file mode will be used to
write the audit trail to /var/log/audit.

Streaming mode is pretty much like file mode, except that data is sent to an
external command on standard input. This allows forwarding audit data to other
hosts via arbitrary mechanisms (including stunnel, ssh, etc).

29

In stream mode, an audit record stream is piped to an user defined program
for post-processing.

In bin mode, multiple fixed length files are maintained with a pointer to the
current location. The audit records are written until the current file has reached
it maximum capacity, then the next file is used until it reaches its maximum
capacity, cycling round-robin through the available files, finally reusing the first
file. This allows the administrator to specify the maximum disk space that audit
records will ever take. A notification program can be used to save each full bin
file for long-term storage.

4.1.3 Audit Tools

The user space tools consist of aucat, augrep, and aurun. aucat reads the
audit log files and outputs the records in human readable format. augrep per-
forms a similar function but it allows the administrator to optionally filter the
records based on user, audit id, outcome, system call, or file. aurun can be used
as a wrapper to start applications, like Apache, and attach them to the audit
subsystem without modifying the application’s source code.

The usage of the tools is described in the corresponding online man pages
distributed with the LAuS library: aurun(8), aucat(1), and augrep(1).

4.1.4 Enhanced PAM Library and the PAM Module

The modified PAM library and the PAM LAuS module work together to set up
the auditing environment.

A complication here is that not all applications use the PAM framework in
exactly the same way, for example sshd bypasses PAM authentication when the
user authenticates using a private key instead of a password.

Also, there are two conflicting requirements concerning the attached audit
information. On the one hand, actions done by an administrator must be audited
with the admin’s original non-root login UID, including for processes started using
su. On the other hand, if the administrator restarts a system daemon such as
sshd, users who log in using that restarted daemon must receive a fresh login
record, and not have their actions audited with the data of the administrator
who restarted the service.

Therefore, some flexibility in configuring the PAM system is required.
The module pam laus.so is responsible for activating auditing for the current

process. It calls laus init() and laus open() to open the audit device file,
then laus attach() to attach the current process to the audit subsystem and
laus setauditid() to assign a fresh audit session ID.

As a special case, if the module flag detach is set, a call to laus detach()

is done before the call to laus attach() to disassociate any previously attached
audit data from the process. This flag MUST be used in the PAM configuration

30

file of services such as sshd or ftpd that require a clean environment for newly
logged-in users. It MUST NOT be used for reauthenticating services such as su
or screen savers, where the currently attached audit data remains valid for the
new process.

The PAM library implements a central intercept hook pam auditlog() that
is called at the end of each stack of auth, account, session and password

modules. An Audit User Message is written to the audit log indicating success
or failure as determined by the module stack’s returned value.

The PAM configuration for each service MUST ensure that the pam laus.so

module is run in every case before control is given to the user. This can be done
in any one of the auth, account or session stacks, but the application code
MUST be verified to ensure that this stack is used in every case. For example,
sshd always runs the account stack, but bypasses the auth stack in the case of
public key authentication.

Note that the audit functions require CAP SYS ADMIN capabilities (usually
equivalent to root rights), so if a stack is not run as root, they will fail. For
example, sshd runs the session stack with the logged-in user’s rights, so putting
the pam laus.so module in that path will not work.

4.1.5 Enhanced System Applications

Applications like login or passwd can write arbitrary text messages to the audit
daemon through the kernel by using the ioctl command AUIOCUSERMESSAGE.
This enables security relevant system applications to write short and descriptive
messages into the audit logs without using syscall logging.

The following list shows all instrumented applications:

• crond

• crontab

• atd

• at

• useradd

• userdel

• usermod

• groupadd

• groupdel

• groupmod

31

• gpasswd

• passwd

• rpasswdd

• chage

4.2 LAuS Configuration

Currently just the audit daemon has configuration files. All other components
are simple enough to configure via command line arguments.

4.2.1 Audit Daemon

The audit daemon needs three configuration files. The main config file (audit.conf)
is used to set the path to the filter rules, to define disk space thresholds and
alike. The files filter.conf and filesets.conf (not mandatory, just used to
ease configuration) are used for filtering.

Please refer to the online man pages audit.conf(5), audit-filter.conf(5), and
audit-filesets.conf(5) for more details.

4.3 LAuS Log Files

In the default configuration the audit daemon writes its log data to /var/log/audit.
The log data can be read with the command aucat(1).

4.3.1 Contents of Audit Record

The audit record written to the device file depends on the type of message (enter
syscall, leave syscall). The audit record will include the major and minor version
number of LAuS and a flag for specifying the byte order.

Please refer to the laus-record(7) man page for a description of the data struc-
tures used.

4.3.2 Raw Log Format

The raw log format just contains the binary data from the kernel and a header
to add the time since the Epoch (00:00:00 UTC, January 1, 1970), measured in
seconds.

32

4.3.3 Cooked Log Format

By using the function laussrv process log() of the server API library it is
possible to obtain the timestamp and raw kernel data via a callback function.
The callback function can use the various print functions of the server API library
to output the data in human readable informations. Example:

25 Jun 03 16:56:50 root 8 LOGIN: uid=0, terminal=/dev/pts/2,

executable=/usr/bin/aurun

25 Jun 03 16:56:50 root 8 open("/etc/shadow", 32768, 0) = 3

25 Jun 03 19:04:12 okir 11 LOGIN: uid=100, terminal=/dev/tty1,

executable=/bin/login

25 Jun 03 19:04:12 okir 11 login: Authentication succeed for

User ’okir’ (100)

25 Jun 03 19:04:32 okir 11 open("/etc/shadow", 32768, 0) =

Permission denied (error 13)

This trail shows a process started via aurun, which opened the shadow file
for reading, and a user logging via /bin/login, and trying to open the shadow
file as well.

33

Appendix A

Abbreviations

BSI Bundesamt fuer Sicherheit in der Informationstechnik

BSM Basic Security Module

CAPP Controlled Access Protection Profile

CC Common Criteria

CERT Computer Emergency Response Team

DAC Discretionary Access Control

DoS Denial–of–Service

EAL Evaluation Assurance Level

FIFO First In, First Out; Named Pipe; local Interprocess Communication

GNU GNU’s Not Unix!, Projekt of the Free Software Foundation

GUI Graphical User Interface

IDMEF Intrusion Detection Message Exchange Format

IDS Instrusion Detection System

IP Internet Protocol, s. RFC–791 [3]

LAuS Linux Audit-Subsystem

LKM Loadable Kernel Modul

PAM Pluggable Authentication Module

SO Security Officer

34

SQL Structured Query Language

SSL Secure Socket Layer, Encryption on presentationlayer

Syslog native Unix Logging System

TCP Transmission Control Protocol, s. RFC–793 [3]

UDP User Datagram Protocol, s. RFC–768 [3]

UML Unified Modeling Language

VFS Virtual Filesystem, abstrace layer of filesystem

XML Extensible Markup Language

35

Appendix B

List of Figures

3.1 Data Flow: Kernel Sources . 13
3.2 Data Flow: User Sources . 15
3.3 Data Flow: Configuration . 19

4.1 LAuS Overview . 21

36

Appendix C

Bibliography

[1] D. Curry, H. Debar, Intrusion Detection Message Exchange Format — Data
Model and Extensible Markup Language (XML) Document Type Definition,
IDWG, February 2002

[2] LibIDMEF, http://www.silicondefense.com/idwg/libidmef/index.htm

[3] RFC Datenbank, http://www.rfc-editor.org/

[4] GNU Free Documentation Licence, http://www.gnu.org/copyleft/fdl.html

[5] CAPP Version 1d, http://www.radium.ncsc.mil/tpep/library/protection_profiles/CAPP-1.d.pdf

37

http://www.silicondefense.com/idwg/libidmef/index.htm
http://www.rfc-editor.org/
http://www.gnu.org/copyleft/fdl.html
http://www.radium.ncsc.mil/tpep/library/protection_profiles/CAPP-1.d.pdf

	Introduction
	CAPP Requirements
	Audit Data Generation FAU_GEN.2
	User Identity Association FAU_GEN.2
	Audit Review FAU_SAR.1
	Restrict Audit Review FAU_SAR.2
	Selectable Audit Review FAU_SAR.3
	Selective Audit FAU_SEL.1
	Guarantees of Data Availability FAU_STG.1
	Action in Case of Audit Data Loss FAU_STG.3
	Prevention of Audit Data Loss FAU_STG.4
	Management of the Audit Trail FMT_MDT.1
	Management of audited Events FMT_MDT.1
	Reliable Time Stamps FPT_STM.1

	High Level Design
	Why a Kernel-Patch?
	How can a Process be attached/detached to/from LAuS?
	How will Events be generated?
	Kernel Source
	System Calls
	Filesystem Hooks
	Netlink Sockets
	Process Creation and Termination

	User Source
	The PAM Framework
	Enhanced System-Applications

	What Information will be kept per Event?
	How will a unbroken Audit Trail be guaranteed?
	How does the Audit Record reach the User-Space?
	How will the Audit Record be written?
	What about post-processing the Audit Record?
	Who can configure what in which way?
	How is the configuration transferred to the Kernel?

	Low Level Design
	LAuS Components
	Kernel Patch
	Login ID
	Audit ID
	Task Structure
	Audited System Calls
	Filesystem Hooks
	Handling I/O Control Messages
	Handling IP Device and Routing Changes
	Device File
	LAuS I/O Messages
	Filter

	Audit Daemon
	Audit Tools
	Enhanced PAM Library and the PAM Module
	Enhanced System Applications

	LAuS Configuration
	Audit Daemon

	LAuS Log Files
	Contents of Audit Record
	Raw Log Format
	Cooked Log Format

	Abbreviations
	List of Figures
	Bibliography

