
An Introduction to

by Erik Johnson

What is Salt?

● Remote Execution
○ Run commands or functions on many hosts at once

○ Receive results asynchronously as each host returns data
to the master

○ Uses the ZeroMQ messaging library

■ Communication takes place over persistent
connections

■ No need to re-establish connections for each action
(reduces TCP overhead)

■ FAST! FAST! FAST!

What is Salt?

● Configuration Management
○ Manage installed packages, running services, configuration

files, users, groups, and more using an easy-to-read
configuration syntax

○ Keep hosts configured the way you want them

○ Changes to hosts which contradict your desired
configuration can easily be reverted

○ Provision cloud computing instances (AWS, Linode,
OpenStack, Rackspace, Parallels, DigitalOcean, etc.)

○ Fulfills a similar role as projects like Puppet, Cfengine,
Chef, etc.

● Remote execution foundation allows for tremendous versatility

● Run one-off commands on hosts for information gathering purposes, or
proactively make changes

○ See the sizes and modified times of log files in /var/log

○ Check which version of a given package is installed on all of your hosts

○ See the network information for all interfaces on a given host

○ Install packages, restart services, etc. on many hosts at once

● CM tools like Puppet have remote execution add-ons (MCollective), while
remote execution in Salt is built-in

● Amazingly easy to extend

How is Salt Different?

Basic Terminology

● Master - The central server from which Salt commands are
run and States are applied

● Minions - The hosts you are managing, they maintain a
connection to the master and await instructions

● States - Directives used for configuration management

● Modules - Collections of functions which can be run from the
Salt CLI (and are also run under the hood by States)

○ Module functions may also be referred to as commands

Installation

● http://docs.saltstack.org/en/latest/topics/installation/index.html

○ Platform-specific installation instructions

● A shell script called salt-bootstrap is available, and can be
used to install salt-minion on most popular distributions

● If necessary, enable the salt-minion daemon so that it starts
at boot, as not all distros will do this for you by default

http://docs.saltstack.org/en/latest/topics/installation/index.html
http://docs.saltstack.org/en/latest/topics/installation/index.html

Start Services

● Edit /etc/salt/master on the Master, and start the salt-
master service

● Edit /etc/salt/minion on the Minion, and start the salt-
minion service

● The Minion will connect to the IP/hostname configured in
the minion config file, or will attempt to connect to the
hostname salt if no master is configured

● The Master will not allow the Minion to authenticate until
the Minion's public key has been accepted

Accept the Minion Key

○ salt-key -A
■ accepts all pending keys

○ salt-key -a hostname

■ accepts key for specific host

● This is done using the salt-key command

Targeting Minions

● Several ways to match
○ Glob (default): 'web*.domain.com'

○ PCRE: 'web0[1-4].(chi|ny).domain.com'

○ List: 'foo.domain.com,bar.domain.com'

○ Grains: 'os:CentOS', 'os:Arch*'

○ Grain PCRE: 'os:(Linux|.+BSD)'

○ Nodegroup: (defined in master config file)

○ Pillar: 'proxy_ip:10.1.2.3'

Targeting Minions (cont'd)

● Several ways to match
○ IP/CIDR: '10.0.0.0/24', '192.168.10.128/25'
○ Compound Matching

■ Use multiple match types in more complex expressions

● 'G@os:RedHat and web*.domain.com'

● 'G@kernel:Linux or E@db[0-9]+\.domain.com'

● 'S@10.1.2.0/24 and G@os:Ubuntu'

○ Range Expressions

■ https://github.com/grierj/range/wiki/Introduction-to-
Range-with-YAML-files

https://github.com/grierj/range/wiki/Introduction-to-Range-with-YAML-files
https://github.com/grierj/range/wiki/Introduction-to-Range-with-YAML-files
https://github.com/grierj/range/wiki/Introduction-to-Range-with-YAML-files

● A basic understanding of data structures will go a long way
towards effectively using Salt

Data Structure Primer

● Dictionaries can be list items, and dictionary values can be
lists or even other dictionaries

○ dictionary - a set of key/value mappings

■ Ex. {"foo": 1, "bar": 2, "baz": 3}

○ list - pretty much what it sounds like, a list of items

■ Ex. ["foo", "bar", "baz"]

● Salt uses lists and dictionaries extensively

● The default data representation format used in Salt is YAML
(http://www.yaml.org/)

YAML

 a:
 foo: 1
 bar: 2
 baz: 3
 b: hello
 c: world

● {"a": {"foo": 1, "bar": 2, "baz": 3}, "b": "hello", "c": "world"}
would be represented by the following YAML:

● Each nested level of data is indented two spaces

● A dictionary key is followed by a colon

http://www.yaml.org/

YAML (cont'd)

● Lists items are prepended with a dash and a space, and all
items in the list are indented at the same level

 foo:
 - 1
 - 2
 - 3
 bar:
 - a
 - b
 - c
 baz: qux

● {"foo": [1, 2, 3], "bar": ["a", "b", "c"], "baz": "qux"} would be
represented by the following YAML:

Grains

● Grains are static data that a Minion collects when it first
starts

● To view a single grain, use the grains.item command

○ sudo salt * grains.item os

● To view all grains, use the grains.items command

○ sudo salt * grains.items

● Similar to ruby's "Facter", which is used by Puppet

○ The major difference between Grains and Facts is that Facts are generated on-
the-fly (and thus can change while the Puppet Agent is running)

○ Grains are loaded once when the Minion starts and stay in memory

○ Dynamic information should be retrieved via Module functions

● States are configuration directives which describe the "state"
in which you want your hosts to be

apache2:
 pkg:
 - installed
 service:
 - running
 - require:
 - pkg: apache2
 - watch:
 - file: /etc/apache2/apache2.conf
 file:
 - managed
 - name: /etc/apache2/apache2.conf
 - source: salt://apache/apache2.conf
 - owner: root
 - group: root
 - mode: 644

Introduction to States

State Declaration
● Type of state being executed

ID Declaration
● Must be unique
● Is passed to all state declarations under it

Function Declaration
● Denotes which state you are applying
● Can be combined with the State Declaration

(i.e. pkg.installed)
"require" Requisite
● Will keep state from running unless the

required state was successfully applied
"watch" Requisite
● Takes an action when there is a change

in the specified state
● In this case, restarts the service"name" Parameter

● Overrides the value inherited
from the ID Declaration

● A typical state, represented in YAML, looks like this:

Introduction to States (cont'd)

● When you configure a state, you are really just representing
a specific data structure

● This means that your states can be written in any format you
wish, so long as you can write a renderer that can return the
data in the proper structure

● YAML is the default, but Salt provides a JSON renderer, as
well as a Python-based Domain Specific Language, and pure
Python for even greater control over the data

● You can override the default renderer by setting the
renderer parameter in the master config file

 file_roots:

 base:

 - /srv/salt

 - /home/username/salt

● In order to start configuring states, you need to make sure that the
file_roots parameter is set in the master config file (remember to restart
the master when done)

● If /srv/salt/foo.conf and /home/username/salt/foo.conf both exist,
then salt://foo.conf would refer to /srv/salt/foo.conf

Using States

● The respective file_roots that you specify will be the root of any salt://
file paths that you use in your states

● Note that you can have more than one root per environment; if a file is
found at the same relative location in more than one root, then the first
match wins

● Salt States are kept in SLS files (SaLt State Files)

Using States (cont'd)

 base:

 '*':

 - users

 - webserver

 'dev0[0-9].domain.com':

 - match: pcre

 - webserver.dev

● In top.sls, you configure which states are applied to which
hosts using Salt's targeting system

 top.sls

 users.sls

 webserver/init.sls

 webserver/dev.sls

 webserver/files/apache2.conf

Default match type is glob, other match types
include pcre, list, grain, grain_pcre, pillar,
nodegroup, ipcidr, compound, and range.

● A simple layout looks like this:

Using States (cont'd)

● users.sls

 moe:

 user:

 - present

 - shell: /bin/zsh

 larry:

 user:

 - present

 curly:

 user:

 - present

● If you have a lot of users, there will be a lot of
repetition here

● To reduce the amount of SLS code that you need to
write, Salt supports templating engines

● More than one can be used by setting the renderer
variable in the master config, using a "pipe" syntax

○ renderer: jinja|mako|yaml

● Templating engines are just renderers

○ jinja (default): http://jinja.pocoo.org/

○ mako: http://www.makotemplates.org/

○ wempy: http://pypi.python.org/pypi/wempy

http://jinja.pocoo.org/
http://www.makotemplates.org/
http://pypi.python.org/pypi/wempy

Using States (cont'd)

● An example of this file using a jinja template:● users.sls

 moe:

 user:

 - present

 - shell: /bin/zsh

 larry:

 user:

 - present

 curly:

 user:

 - present

{% for username in 'moe', 'larry', 'curly' %}

{{ username }}:

 user:

 - present

{% if username == 'moe' %}

 - shell: /bin/zsh

{% endif %}

{% endfor %}

● Applying states can be done in two ways

Using States (cont'd)

● test=True can be appended to the end of either
command to see what changes the command would make
(but not actually perform them)

○ Apply all SLS files configured in top.sls, using the state.
highstate command (recommended)

■ sudo salt * state.highstate

○ One or more SLS files at a time, using the state.sls
command

■ sudo salt * state.sls users

Pillar

● Pillar data are user-defined variables

 base:

 '*':

 - users

● Dynamic, unlike Grains; can be modified without restarting
the minion

● Applied with the same targeting logic and file layout used for
States

● Separate file root and top.sls

● Set the pillar_roots variable in the master config file (don't
forget to restart the master)

● Here is a simple example top.sls for Pillar

Pillar (cont'd)

userdata:

 moe:

 fullname: OhMay

 uid: 1101

 password: 1TL/F8XPx$Ylxr0TZalM3LnNmBtka8V0

 shell: /bin/zsh

 larry:

 fullname: ArryLay

 uid: 1102

 password: 1J9Jy3.ke$FOHwZ7nzf6BxEkP9nu.R..

 curly:

 fullname: Curly Cue!

 uid: 1103

 password: 1V.ciXdRZ$haT79D5N2tgU7I5PkC9aJ0

● Going back to our user states
from before, we can use
Pillar to make them even
more flexible by creating a
users.sls with more detailed
user information

● NOTE: The password hashes
at the left are unsalted MD5.
Do not use this for
passwords!

○ They're only used here so
they'll fit in the slide :)

Pillar (cont'd)

userdata:

 moe:

 fullname: OhMay

 uid: 1101

 password: 1TL/F8XPx$Ylxr0TZalM3LnNmBtka8V0

 shell: /bin/zsh

 larry:

 fullname: ArryLay

 uid: 1102

 password: 1J9Jy3.ke$FOHwZ7nzf6BxEkP9nu.R..

 curly:

 fullname: Curly Cue!

 uid: 1103

 password: 1V.ciXdRZ$haT79D5N2tgU7I5PkC9aJ0

● The templated SLS would
now look like this:

 {% for username, params in

 pillar['userdata'].iteritems() %}

 {{ username }}:

 user:

 - present

 {% for key, value in

 params.iteritems() %}

 - {{ key }}: {{ value }}

 {% endfor %}

 {% endfor %}

Pillar (cont'd)

{% if grains['os'] == 'Ubuntu' %}

apache: apache2

{% elif grains['os_family'] == 'RedHat' %}

apache: httpd

{% endif %}

● Pillar is also useful for values that differ
between platforms, such as package
names

{{ salt['pillar.get']('apache', 'apache') }}:

 pkg:

 - installed

 service:

 - running

 - enable: True

● Note that the jinja conditional in the
pillar SLS could have been placed in the
state SLS

○ If you did it this way, you would not
need a pillar variable

● pillar.get is new in salt 0.14, allowing
you to specify a default if the specified
pillar variable does not exist

● The normal way of specifying this pillar
would be: {{ pillar['apache'] }}

Pkg state

Pillar data

Templating Managed Files

● Managed files are files that are deployed using the file.
managed state

● The same template engines available in SLS are available to
managed files

○ Grains and Pillar data are also available, as they can be
referenced in templates

● Templating can help you avoid needing to maintain several
different copies of a config file for an application if only
certain things differ between instances / hosts / physical
sites

Templating Managed Files (cont'd)

[main]
hostname={{ grains['fqdn'] }}
type=web
port={{ pillar['port'] }}
os={{ os }}
somevar={{ somevar }}

/path/to/config/file:
 file:
 - managed
 - source: salt://config.template.ini
 - user: root
{% if grains['os'] == 'Ubuntu' %}
 - group: sudo
{% elif grains['os_family'] == 'RedHat' %}
 - group: wheel
{% endif %}
 - mode: 644
 - template: jinja
 - context:
 - os: {{ grains['os'] }}
 - somevar: foo

Config file template

File state

● Variables defined in the
context param will be passed
through to the template

● Again, multiple template
engines can be used, by
setting the template param
using the "pipe" syntax

○ template: jinja|mako

Miscellaneous

● You can include SLS files in other SLS files, allowing
"common" SLS code to be written once and re-used in more
than one SLS file

● In addition to Grains and Pillar, Salt Module functions are
also available within template code

○ This is done with an include statement at the top of the
SLS file

include:
 - webserver.common

{{ salt['network.hwaddr']('eth0') }}

○ Ex. Retrieving the MAC address for eth0

Miscellaneous (cont'd)

● You can override the renderer for a given SLS file by using a
"shebang"-like entry at the top of the file

○ Ex: #jinja|json or #py

● Each environment defined in the file_roots section of the master
config can have its own top.sls

○ Defining states for an environment in the base environment's
top.sls will override the top.sls in any other environment

○ In other words, the base top.sls is authoritative

● Providers for the service, pkg, etc. states can be overridden from
the defaults detected during minion startup

○ https://salt.readthedocs.org/en/latest/ref/states/providers.html

https://salt.readthedocs.org/en/latest/ref/states/providers.html
https://salt.readthedocs.org/en/latest/ref/states/providers.html

Extending Salt

● Many aspects of Salt are extendable

○ Modules: http://docs.saltstack.org/en/latest/ref/modules/index.html

○ States: http://docs.saltstack.org/en/latest/ref/states/writing.html

○ Grains: http://docs.saltstack.org/en/latest/topics/targeting/grains.html#writing-grains

○ Renderers: http://docs.saltstack.org/en/latest/ref/renderers/index.html#writing-renderers

● When designing States/Modules, keep in mind that Modules should do
the actual work

● States should check to see if the desired state is already achieved, and
(if necessary) invoke Module functions to achieve the desired state

● There are other aspects of Salt, such as returners, outputters, and
runners, which can be extended

http://docs.saltstack.org/en/latest/ref/modules/index.html
http://docs.saltstack.org/en/latest/ref/states/writing.html
http://docs.saltstack.org/en/latest/topics/targeting/grains.html#writing-grains
http://docs.saltstack.org/en/latest/ref/renderers/index.html#writing-renderers

Get Involved!

● Fork Salt on GitHub and submit pull requests, bug reports,
and feature requests

○ https://github.com/saltstack/salt/

● Join the Mailing List

○ https://groups.google.com/group/salt-users

● Chat on IRC (#salt on irc.freenode.net)

○ http://webchat.freenode.net/?channels=salt

https://github.com/saltstack/salt/
https://github.com/saltstack/salt/
https://groups.google.com/group/salt-users
https://groups.google.com/group/salt-users
http://webchat.freenode.net/?channels=salt
http://webchat.freenode.net/?channels=salt

More Official Salt Stack Projects

● salt-cloud - Provision minions on various cloud providers

○ https://github.com/saltstack/salt-cloud

● salty-vagrant - Provision Vagrant boxes using Salt

○ https://github.com/saltstack/salty-vagrant

● salt-api - Exposes certain aspects of Salt via REST, etc.

○ https://github.com/saltstack/salt-api

● salt-vim - Vim plugins to make editing YAML SLS files easier

○ https://github.com/saltstack/salt-vim

● salt-ui - Pre-alpha web UI for Salt which uses salt-api

○ https://github.com/saltstack/salt-ui

https://github.com/saltstack/salt-cloud
https://github.com/saltstack/salt-cloud
https://github.com/saltstack/salty-vagrant
https://github.com/saltstack/salty-vagrant
https://github.com/saltstack/salt-api
https://github.com/saltstack/salt-api
https://github.com/saltstack/salt-vim
https://github.com/saltstack/salt-vim
https://github.com/saltstack/salt-ui
https://github.com/saltstack/salt-ui

● Keep in mind that these (aside from Salt Air) are older videos, and might
be outdated as Salt is a very actively-developed project

● Intro to Salt Stack (UTOSC 2012)

○ http://youtu.be/q-6v275Kno4

● Managing Web Applications with Salt (UTOSC 2012)

○ http://youtu.be/osGLqv0zPI0

● Remote Execution Demo

○ http://blip.tv/saltstack/salt-installation-configuration-and-remote-
execution-5713423

● Thomas Hatch Interviewed on FLOSS Weekly

○ http://twit.tv/show/floss-weekly/191

● Salt Air - Community news, new features, demos, etc.

○ https://www.youtube.com/SaltStack

Additional Videos/Demos

http://youtu.be/q-6v275Kno4
http://youtu.be/q-6v275Kno4
http://youtu.be/osGLqv0zPI0
http://youtu.be/osGLqv0zPI0
http://blip.tv/saltstack/salt-installation-configuration-and-remote-execution-5713423
http://blip.tv/saltstack/salt-installation-configuration-and-remote-execution-5713423
http://blip.tv/saltstack/salt-installation-configuration-and-remote-execution-5713423
http://twit.tv/show/floss-weekly/191
http://twit.tv/show/floss-weekly/191
https://www.youtube.com/SaltStack
https://www.youtube.com/SaltStack

The End!

● My Name: Erik Johnson

● How to find me:

○ On Freenode, GitHub, and Twitter under the username
terminalmage

● These slides available at: http://goo.gl/T8SVz

http://goo.gl/T8SVz

