SALTSTAC

by Erik Johnson

What is Salt?

e Remote Execution
O Run commands or functions on many hosts at once

O Receive results asynchronously as each host returns data
to the master

O Uses the ZeroMQ messaging library

B Communication takes place over persistent
connections

B No need to re-establish connections for each action
(reduces TCP overhead)

B FAST! FAST! FAST!

¥ SALTSTACK

What is Salt?

e Configuration Management

O

Manage installed packages, running services, configuration
files, users, groups, and more using an easy-to-read

configuration syntax

Keep hosts configured the way you want them

Changes to hosts which contradict your desired
configuration can easily be reverted

Provision cloud computing instances (AWS, Linode,
OpenStack, Rackspace, Parallels, DigitalOcean, etc.)

Fulfills a similar role as projects like Puppet, Cfengine,
Chef, etc.

¥ SALTSTACK

How is Salt Different?

® Remote execution foundation allows for tremendous versatility

® Run one-off commands on hosts for information gathering purposes, or
proactively make changes

See the sizes and modified times of log files in /var/log
Check which version of a given package is installed on all of your hosts

See the network information for all interfaces on a given host

O O O O

Install packages, restart services, etc. on many hosts at once

® CM tools like Puppet have remote execution add-ons (MCollective), while
remote execution in Salt is built-in

® Amazingly easy to extend

¥ SALTSTACK

Basic Terminology

® Master - The central server from which Salt commands are
run and States are applied

® Minions - The hosts you are managing, they maintain a
connection to the master and await instructions

® States - Directives used for configuration management

® Modules - Collections of functions which can be run from the
Salt CLI (and are also run under the hood by States)

O Module functions may also be referred to as commands

¥ SALTSTACK

Installation

® http://docs.saltstack.org/en/latest/topics/installation/index.html

O Platform-specific installation instructions

® A shell script called salt-bootstrap is available, and can be
used to install salt-minion on most popular distributions

® |f necessary, enable the salt-minion daemon so that it starts
at boot, as not all distros will do this for you by default

¥ SALTSTACK

http://docs.saltstack.org/en/latest/topics/installation/index.html
http://docs.saltstack.org/en/latest/topics/installation/index.html

Start Services

® Edit /etc/salt/master on the Master, and start the salt-
master service

® Edit /etc/salt/minion on the Minion, and start the salt-
minion service

® The Minion will connect to the IP/hostname configured in
the minion config file, or will attempt to connect to the

hostname salt if no master is configured

¥ SALTSTACK

Accept the Minion Key

® The Master will not allow the Minion to authenticate until
the Minion's public key has been accepted

® This is done using the salt-key command
O salt-key -a hostname
B accepts key for specific host
O salt-key -A
B accepts all pending keys

¥ SALTSTACK

Targeting Minions

e Several ways to match

Glob (default): 'web*.domain.com'

PCRE: 'webO0[1-4].(chi|ny).domain.com'
List: 'foo.domain.com,bar.domain.com’
Grains: '0s:CentOS’, 'os:Arch™*'

Grain PCRE: 'os:(Linux|.+BSD)'
Nodegroup: (defined in master config file)

O O O O O O O

Pillar: 'proxy _ip:10.1.2.3'

¥ SALTSTACK

Targeting Minions (cont'd)

e Several ways to match

O IP/CIDR: '10.0.0.0/24', '192.168.10.128/25'
O Compound Matching

B Use multiple match types in more complex expressions
® 'G@os:RedHat and web*.domain.com'
® 'G@kernel:Linux or E@db[0-9]+\.domain.com'
® 'S@10.1.2.0/24 and G@os:Ubuntu'
O Range Expressions

B https://github.com/grierj/range/wiki/Introduction-to-
Range-with-YAML-files

¥ SALTSTACK

https://github.com/grierj/range/wiki/Introduction-to-Range-with-YAML-files
https://github.com/grierj/range/wiki/Introduction-to-Range-with-YAML-files
https://github.com/grierj/range/wiki/Introduction-to-Range-with-YAML-files

Data Structure Primer

® A basic understanding of data structures will go a long way
towards effectively using Salt

® Salt uses lists and dictionaries extensively
O list - pretty much what it sounds like, a list of items
B Ex. ["foo", "bar", "baz"]
O dictionary - a set of key/value mappings
B Ex. {"foo":1, "bar": 2, "baz": 3}

® Dictionaries can be list items, and dictionary values can be
lists or even other dictionaries

¥ SALTSTACK

YAML

® The default data representation format used in Salt is YAML
(http://www.yaml.org/)

® Each nested level of data is indented two spaces

® A dictionary key is followed by a colon

' {llaII: {llfooll: 1’ llbarll: 2’ "baZ": 3}’ llbll: llhe”OIl’ "C": Ilworldll}
would be represented by the following YAML:

a.

foo: 1
bar: 2
baz: 3
b: hello

c: world

¥ SALTSTACK

http://www.yaml.org/

YAML (cont'd)

® Listsitems are prepended with a dash and a space, and all
items in the list are indented at the same level

. {"fOO": [1’ 2’ 3]’ Ilbarll: [Ilall’ llbll’ IICII]’ "baZ": Ilquxll} Would be
represented by the following YAML:

foo:

|
o o

baz: qux

¥ SALTSTACK

Grains

® Grains are static data that a Minion collects when it first
starts

® Similar to ruby's "Facter", which is used by Puppet

O The major difference between Grains and Facts is that Facts are generated on-
the-fly (and thus can change while the Puppet Agent is running)

O Grains are loaded once when the Minion starts and stay in memory

O Dynamic information should be retrieved via Module functions

® Toview all grains, use the grains.items command
O sudo salt * grains.items
® To view asingle grain, use the grains.item command

O sudo salt * grains.item os

¥ SALTSTACK

Introduction to States

® States are configuration directives which describe the "state"
in which you want your hosts to be

® A typical state, represented in YAML, looks like this:

apache2: - ID Declaration
o Emt%ﬁfg%%
- installed = unc | . '
" DRt asesssintiorsynger
- runnin
- require: o "meqira"ReUTaed with the State Declaration
- pkg: apache? F H .
e h . .,Wg{&&gﬂ%&%&lgﬁ@m running unless .the
- file: /etc/apache2/apache2.cont [€Qyired state was successiully ap g“cef%nge
file:
l_emanaged in the specified state

- name: /etc/apache2/apache2.conf <—— [RAMECRMIDRLES the service
source: salt://apache/apache2.conf o Overrides the value inherited

owner: root

group: root from the ID Declaration
mode: 644

¥ SALTSTACK

Introduction to States (cont'd)

® When you configure a state, you are really just representing
a specific data structure

® This means that your states can be written in any format you
wish, so long as you can write a renderer that can return the

data in the proper structure

® YAML is the default, but Salt provides a JSON renderer, as
well as a Python-based Domain Specific Language, and pure

Python for even greater control over the data

® You can override the default renderer by setting the
renderer parameter in the master config file

¥ SALTSTACK

Using States

® In order to start configuring states, you need to make sure that the
file_roots parameter is set in the master config file (remember to restart
the master when done)

® The respective file_roots that you specify will be the root of any salt://
file paths that you use in your states

® Note that you can have more than one root per environment; if a file is
found at the same relative location in more than one root, then the first
match wins

file roots:
base:
- /srv/salt

- /home/username/salt

® If /srv/salt/foo.conf and /home/username/salt/foo.conf both exist,
then salt://foo.conf would refer to /srv/salt/foo.conf

¥ SALTSTACK

Using States (cont'd)

® Salt States are kept in SLS files (SalLt State Files)
® A simple layout looks like this:

top.sls

users.sls
webserver/init.sls
webserver/dev.sls

webserver/files/apache2.conf

® |n top.sls, you configure which states are applied to which
hosts using Salt's targeting system

base:
_—
- users Default match type is glob, other match types
- webserver include pcre, list, grain, grain_pcre, pillar,
'dev0[0-9] .domain.com": nodegroup, ipcidr, compound, and range.

- match: pcre

- webserver.dev

¥ SALTSTACK

Using States (cont'd)

® users.sls ® |f you have a lot of users, there will be a lot of
repetition here

moe:

user: ® To reduce the amount of SLS code that you need to

- present write, Salt supports templating engines

- shell: /bin/zsh
O jinja (default): http://jinja.pocoo.org/

larry:
usZr: O mako: http://www.makotemplates.org/
- present
O wempy: http://pypi.python.org/pypi/wempy
curly:
user: ® Templating engines are just renderers
- present

® More than one can be used by setting the renderer
variable in the master config, using a "pipe" syntax

O renderer: jinja|mako|yaml

¥ SALTSTACK

http://jinja.pocoo.org/
http://www.makotemplates.org/
http://pypi.python.org/pypi/wempy

Using States (cont'd)

® users.sls ® An example of this file using a jinja template:

moe : % for username in 'moe', 'larry', 'curly' %}
user: {{ username }}:
- present user:
- shell: /bin/zsh - present
{%$ if username == 'moe' %}
larry: - shell: /bin/zsh
user: {% endif %}
- present {%$ endfor %}

curly:
user:

- present

¥ SALTSTACK

Using States (cont'd)

® Applying states can be done in two ways

O One or more SLS files at a time, using the state.sls
command

B sudo salt * state.sls users

O Apply all SLS files configured in top.sls, using the state.
highstate command (recommended)

B sudo salt * state.highstate

® test=True can be appended to the end of either
command to see what changes the command would make

(but not actually perform them)

¥ SALTSTACK

Pillar

® Pillar data are user-defined variables

® Dynamic, unlike Grains; can be modified without restarting
the minion

® Applied with the same targeting logic and file layout used for
States

® Separate file root and top.sls

® Set the pillar_roots variable in the master config file (don't
forget to restart the master)

® Here is a simple example top.sls for Pillar

base:

— users

¥ SALTSTACK

Pillar (cont'd)

userdata: ® Going back to our user states
moe: from before, we can use
fullname: OhMay .
wid: 1101 Pillar to make them even

password: S$1STL/F8XPxS$SY1xr0TZalM3LnNmBtka8V0
shell: /bin/zsh

more flexible by creating a
users.sls with more detailed
larry:

fullname: Arrylay user information
uid: 1102

password: $15J9Jy3.kesrorwzTnzf6exzkronu.R.. @ NOTE: The password hashes
at the left are unsalted MD5.

curly:
fullname: Curly Cue! DO not use thls for
uid: 1103 |
password: 1V.ciXdRZShaT79D5N2tgU7I5PkC9aJ0 paSSWOrdS

O They're only used here so
they'll fit in the slide :)

¥ SALTSTACK

Pillar (cont'd)

pesrdares ® The templated SLS would
fullname: OhMay now look like this:
uid: 1101
password: S$1STL/F8XPxS$SY1xr0TZalM3LnNmBtka8V0
shell: /bin/zsh {%$ for username, params in
pillar(['userdata'].iteritems () %}
larry: {{ username }}:
fullname: Arrylay user:
uid: 1102

- present

password: 1J9Jy3.keSFOHWZ7nzf6BxEkP9nu.R. . . ,
{% for key, value in

params.iteritems () %}

curly:
fullname: Curly Cue! - {{ key }}: {{ value }}
uid: 1103 endfor %}

—_
o\°

o®

password: $1S$V.ciXdRZ$haT79D5N2tgU7I5PkC9aJ0 endfor %}

¥ SALTSTACK

Pillar (cont'd)

Pillar data _ .

® Ppillaris also useful for values that differ
(s 1f grains['os'] == 'Ubuntu' %) between platforms, such as package
apache: apache?2 names
{% elif grains['os family'] == 'RedHat' %}
apache: httpd - epe .
. P ® Note that the jinja conditional in the

{% endif %}

pillar SLS could have been placed in the
state SLS

O If you did it this way, you would not

Pkg state need a pillar variable
{{ salt['pillar.get'] ('apache', 'apache') }}: ® pillar.get is new in salt 014, allowing
pkg: you to specify a default if the specified
- installed

pillar variable does not exist

service:

- running .

- enable: True

The normal way of specifying this pillar
would be: {{ pillar['apache'] }}

¥ SALTSTACK

Templating Managed Files

® Managed files are files that are deployed using the file.
managed state

® The same template engines available in SLS are available to
managed files

O Grains and Pillar data are also available, as they can be
referenced in templates

® Templating can help you avoid needing to maintain several
different copies of a config file for an application if only

certain things differ between instances / hosts / physical
sites

¥ SALTSTACK

Templating Managed Files (cont'd)

Config file template ® Variables defined in the

(main] context param will be passed
hostname={{ grains['fqgdn'] }}

type=web through to the template

port={{ pillar['port'] }}
os={{ os }}
somevar={{ somevar }}

® Again, multiple template
File state engines can be used, by

St oy cont ia/ i le: setting the template param

file: . r] " n
- managed using the "pipe” syntax
- source: salt://config.template.ini
- user: root
{$ if grains['os'] == 'Ubuntu' %} . 29 .
£ orainelios! O template: jinja|mako
{% elif grains['os family'] == 'RedHat' %}
- group: wheel
{%$ endif %}
- mode: 644

- template: jinja

- context:
- os: {{ grains['os'] }}
- somevar: foo

¥ SALTSTACK

Miscellaneous

® You can include SLS files in other SLS files, allowing
"common" SLS code to be written once and re-used in more

than one SLS file

O This is done with an include statement at the top of the
SLS file

include:
- webserver.common

® In addition to Grains and Pillar, Salt Module functions are
also available within template code

O Ex. Retrieving the MAC address for ethO

{{ salt['network.hwaddr'] ('ethO0') }}

¥ SALTSTACK

Miscellaneous (cont'd)

® You can override the renderer for a given SLS file by using a
"shebang'-like entry at the top of the file

O Ex:#jinja|json or #py

® Providers for the service, pkg, etc. states can be overridden from
the defaults detected during minion startup

O https://salt.readthedocs.org/en/latest/ref/states/providers.html

® Each environment defined in the file_roots section of the master
config can have its own top.sls

O Defining states for an environment in the base environment's
top.sls will override the top.sls in any other environment

O In other words, the base top.sls is authoritative

¥ SALTSTACK

https://salt.readthedocs.org/en/latest/ref/states/providers.html
https://salt.readthedocs.org/en/latest/ref/states/providers.html

Extending Salt

® Many aspects of Salt are extendable

Modules: http://docs.saltstack.org/en/latest/ref/modules/index.html

States: http://docs.saltstack.org/en/latest/ref/states/writing.html

Grains: http://docs.saltstack.org/en/latest/topics/targeting/grains.html#writing-grains

o O O O

Renderers: http://docs.saltstack.org/en/latest/ref/renderers/index.html#writing-renderers

® \When designing States/Modules, keep in mind that Modules should do
the actual work

® States should check to see if the desired state is already achieved, and
(if necessary) invoke Module functions to achieve the desired state

® There are other aspects of Salt, such as returners, outputters, and
runners, which can be extended

¥ SALTSTACK

http://docs.saltstack.org/en/latest/ref/modules/index.html
http://docs.saltstack.org/en/latest/ref/states/writing.html
http://docs.saltstack.org/en/latest/topics/targeting/grains.html#writing-grains
http://docs.saltstack.org/en/latest/ref/renderers/index.html#writing-renderers

Get Involved!

® Fork Salt on GitHub and submit pull requests, bug reports,
and feature requests

O https://github.com/saltstack/salt/

® Join the Mailing List
O https://sroups.google.com/group/salt-users

® Chat on IRC (#salt on irc.freenode.net)
O http://webchat.freenode.net/?channels=salt

¥ SALTSTACK

https://github.com/saltstack/salt/
https://github.com/saltstack/salt/
https://groups.google.com/group/salt-users
https://groups.google.com/group/salt-users
http://webchat.freenode.net/?channels=salt
http://webchat.freenode.net/?channels=salt

More Official Salt Stack Projects

® salt-cloud - Provision minions on various cloud providers

O https://github.com/saltstack/salt-cloud

® salty-vagrant - Provision Vagrant boxes using Salt

O https://github.com/saltstack/salty-vagrant

® salt-api - Exposes certain aspects of Salt via REST, etc.

O https://github.com/saltstack/salt-api

® salt-vim - Vim plugins to make editing YAML SLS files easier

O https://github.com/saltstack/salt-vim

® salt-ui - Pre-alpha web Ul for Salt which uses salt-api

O https://github.com/saltstack/salt-ui

¥ SALTSTACK

https://github.com/saltstack/salt-cloud
https://github.com/saltstack/salt-cloud
https://github.com/saltstack/salty-vagrant
https://github.com/saltstack/salty-vagrant
https://github.com/saltstack/salt-api
https://github.com/saltstack/salt-api
https://github.com/saltstack/salt-vim
https://github.com/saltstack/salt-vim
https://github.com/saltstack/salt-ui
https://github.com/saltstack/salt-ui

Additional Videos/Demos

® Keep in mind that these (aside from Salt Air) are older videos, and might
be outdated as Salt is a very actively-developed project

® Intro to Salt Stack (UTOSC 2012)
O http://voutu.be/q-6v275Kno4

® Managing Web Applications with Salt (UTOSC 2012)
O http://youtu.be/osGLgv0zPI0

® Remote Execution Demo

O http://blip.tv/saltstack/salt-installation-configuration-and-remote-
execution-5713423

® Thomas Hatch Interviewed on FLOSS Weekly
O http://twit.tv/show/floss-weekly/191

® Salt Air - Community news, new features, demos, etc.

O https://www.youtube.com/SaltStack

¥ SALTSTACK

http://youtu.be/q-6v275Kno4
http://youtu.be/q-6v275Kno4
http://youtu.be/osGLqv0zPI0
http://youtu.be/osGLqv0zPI0
http://blip.tv/saltstack/salt-installation-configuration-and-remote-execution-5713423
http://blip.tv/saltstack/salt-installation-configuration-and-remote-execution-5713423
http://blip.tv/saltstack/salt-installation-configuration-and-remote-execution-5713423
http://twit.tv/show/floss-weekly/191
http://twit.tv/show/floss-weekly/191
https://www.youtube.com/SaltStack
https://www.youtube.com/SaltStack

The End!

® My Name: Erik Johnson

® How to find me:

O On Freenode, GitHub, and Twitter under the username
terminalmage

® These slides available at: http://g00.21/T8SVz

¥ SALTSTACK

http://goo.gl/T8SVz

